Градуировочная таблица резервуара: необходимые сведения о ней

Содержание

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.


Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).


Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.


Рис. 3. Измерение напряжения на проводах ТП

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.


Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Преимущества и недостатки термометров сопротивления

Как и любой прибор, использование термометров сопротивления имеет ряд преимуществ и недостатков. Рассмотрим их.

Преимущества:

  • практически линейная характеристика;
  • измерения достаточно точны (погрешность не более 1°С);
  • некоторые модели дешёвые и просты в использовании;
  • взаимозаменяемость приборов;
  • стабильность работы.

Недостатки:

  • малый диапазон измерений;
  • довольно низкая предельная температура измерений;
  • необходимость использования специальных схем подключения для повышенной точности, что увеличивает стоимость внедрения.

Термометр сопротивления — распространенное устройство практически во всех отраслях промышленности. Этим прибором удобно измерять невысокие температуры, не опасаясь за точность полученных данных. Термометр не отличается особой долговечностью, однако, приемлемая цена и простота замены датчика перекрывают этот небольшой недостаток.

Определение номинального значения сопротивления резистора по маркировке цветовыми полосами: онлайн калькулятор

Для чего нужен пирометр и как измерять температуру бесконтактным методом

Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

Что такое термопара, принцип действия, основные виды и типы

Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение

Что такое петля фаза-ноль простым языком — методика проведения измерения

Градуировочные таблицы термометров сопротивления

Градуировочные таблицы — это сводная сетка, по которой можно легко определить при какой температуре термометр будет иметь определенное сопротивление. Такие таблицы помогают работникам КИПиА оценить значение измеряемой температуры по определённому значению сопротивления.

В рамках этой таблицы существуют специальные обозначения ТС. Их вы можете увидеть в верхней строчке. Цифра означает значение сопротивления датчика при 0°С, а буква металл, из которого оно создано.

Для обозначения металла используют:

  • П или Pt — платина;
  • М — медь;
  • N — никель.

Например, 50М — это медный ТС, с сопротивлением 50 Ом при 0 °С.

Ниже представлен фрагмент градуировочной таблицы термометров.

50М (Ом) 100М (Ом) 50П (Ом) 100П (Ом) 500П (Ом)
-50 °С 39.3 78.6 40.01 80.01 401.57
0 °С 50 100 50 100 500
50 °С 60.7 121.4 59.7 119.4 1193.95
100 °С 71.4 142.8 69.25 138.5 1385
150 °С 82.1 164.2 78.66 157.31 1573.15

Чем отличается платиновый термометр сопротивления (ТСП) от аналогов

Чтобы понять чем обусловлена высокая популярность такого вида приборов, стоит пару слов сказать о принципе действия всех вариантов. Термометры сопротивления предназначены для подключения к измерительному оборудованию и для непосредственного замера уровня тепловой энергии. Считывание показаний осуществляется за счет изменений чувствительного элемента. Им является проволока или пленка из металла с известной зависимостью уровня электрического сопротивления от количества тепла.

Согласно действующим стандартам для изготовления чувствительного элемента может использоваться никель, медь и платина. Последний материал наилучшим образом подходит для решения производственных задач. Так, платиновый термометр сопротивления (ТСП) проявляет высокие показания стабильности и надежности при температуре до 600 градусов Цельсия.

Почему термопреобразователи сопротивления (ТС) стоит покупать именно у нас

Рассматриваемые приборы заслужили высокую востребованность неслучайно. Их популярность объясняется тем, что термопреобразователь сопротивления (ТС) обладает отличной взаимозаменяемостью, а также высокой линейностью. Это значит, что при необходимости установки нового прибора, повторная калибровка оборудования не потребуется.

Обратившись к нашим специалистам, вы можете с легкостью купить комплект термопреобразователей, каждый из которых будет отвечать высоким требованиям качества, стабильности и надежности работы. НПП «Прома» обладает широкой географией поставок термопреобразователей и на протяжении последних 20 лет с успехом обслуживает ведущие отечественные заводы. Заказывая продукцию у нас, вы получите лучшее предложение по соотношению качества и стоимости. Мы уверены в надежности предлагаемых изделий, так как работаем с ними в собственном конструкторском бюро, а также производим их на новейшем технологичном оборудовании.

Разновидности датчиков температуры ТСМ

Компания выпускает модификации термопреобразователей с медным ЧЭ от ТСМ035 до ТСМ165. Изделия применяются для постоянного замера температуры:

  • твердых;
  • газообразных;
  • жидких;
  • агрессивных;
  • неагрессивных сред.

Датчики имеют простую конструкцию, невысокую стоимость изготовления. При этом изделия качественные и надежные. Обладают приемлемой эксплуатационной долговечностью.

Основные техпараметры датчика температуры ТСМ

Термопреобразователи характеризуются следующими техническими параметрами:

  • диапазон T°С, от -50°С до +180°С.
  • класс допуска, A, B, C;
  • показатель тепловой инерции, от 1 до 180;
  • защитная арматура: латунь, сталь, медь М1.

Компания также выпускает датчики температуры ТСМУ имеющие унифицированный выходной сигнал. Цена на них выше, чем стандартных ТСМ.

Сферы применения

Одноканальные медные термопреобразователи используются для измерения температур в пищевой промышленности при производстве, стерилизации продукции. По взрывозащите такие датчики имеют обычное и специальное исполнение.

В системах вентиляции, электрощитовых, хранилищах, для контроля и регулировки температуры при технологических процессах используются ТСМ 302. Средний срок службы термопреобразователей сопротивления свыше 5 лет.

Также предлагаем Вам ознакомиться:

Компания НПП «Прома» является одним из ведущих производителей продукции для автоматизации промышленных производств в города России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Казань, Челябинск, Омск, Самара, Ростов-на-Дону, Уфа, Красноярск, Пермь, Воронеж, Волгоград, Краснодар, Рязань.

Стандарты и нормы

В настоящее время международным стандартом, который устанавливает допуск и отношение температуры к электрическому сопротивлению для платиновых термопреобразователей сопротивления ТСП, является IEC 60751: 2008; ASTM E1137 также используется в США.

Безусловно, наиболее распространенные устройства, используемые в промышленности, имеют номинальное сопротивление 100 Ом при 0 °C и называются датчиками Pt100 («Pt» — символ для платины, «100» для сопротивления в Ом при 0 °C). Также можно получить датчики Pt1000, где 1000 — это сопротивление в омах при 0 °C. Чувствительность стандартного датчика 100 Ом составляет номинальную 0,385 Ом / °C. Также доступны RTD с чувствительностью 0,375 и 0,392 Ом / °C, а также множество других.

Термопреобразователи сопротивления ТСМ конструируются в нескольких формах и в ряде случаев обеспечивают большую стабильность, точность и повторяемость, чем пары. В то время как термопары используют эффект Зеебека для генерации напряжения, вышеупомянутые приборы используют электрическое сопротивление и требуют источника питания для работы. Оно в идеале изменяется почти линейно с температурой в соответствии с уравнением Каллендара – Ван Дюзена. Для его измерения хорошо подходит термопреобразователь сопротивления ДТС.

Виды и их характеристика

Основное различие между термометрами – устройство датчика. Они сделаны из разных материалов, отличаются толщиной чувствительного элемента и имеют различную стоимость.

Металлические

Они бывают платиновые, никелевые и медные. Рассмотрим подробнее элементы их этих металлов.

Платина. Самый дорогой материал, из нее изготавливаются самые точные лабораторные и эталонные приборы. Достоинства – очень высокая точность и широкий диапазон измерений, стабильность работы, практически линейная зависимость электропроводности от температуры (номинальная статическая характеристика, НСХ). Недостаток – высокая стоимость, хотя сейчас развитие технологий уменьшает количество платины, а значит, и цену. Все плюсы при этом сохраняются. Приборы с датчиком из платины обозначаются как ТСП (Термометр Сопротивления с платиновым датчиком).

Также существуют различные конструкции чувствительного элемента.

Проволочный. Чувствительный элемент – проволока, намотанная на каркас из металла, керамики, кварца, слюды или пластмассы. Во избежание потерь на индукцию намотка бифилярная (это когда провод складывается вдвое и только затем наматывается). Между витками есть мелкодисперсный наполнитель из Al2O3, который нужен для дополнительной изоляции витков и амортизации при колебаниях. Катушка заключена в металлический корпус и загерметизирована.

Полупроводниковые

Обычно они изготавливаются из германия и кремния. В качестве легирующей добавки выступает сурьма. Также есть кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ) приборы, работающие в пределах от -90 до +180 градусов. Благодаря большому внутреннему сопротивлению датчика проводимостью соединителей можно пренебречь. Чувствительный элемент расположен в защитном корпусе.

Преимущества – высокое быстродействие, возможность работы в сверхнизких температурах – от -270 градусов по Цельсию. Точность и стабильность измерений большие. Недостатки – нелинейная характеристика НСХ и невоспроизводимость градуировочной характеристики.

Благодаря нелинейной зависимости «температура-сопротивление» такие устройства скачкообразно меняют проводимость при определенной температуре. Это называется релейным эффектом и позволяет использовать данные приборы в системах сигнализации. Датчики по-разному крепятся на поверхность. Варианты креплений делятся на:

  • ввинчивающиеся;
  • поверхностные;
  • вставные;
  • с присоединительными проводами;
  • с байонетными соединениями (это осевое перемещение и поворот, как в боксах для дисков).

Расшифровка обозначений термометров сопротивления не составит труда. Обычно латиницей или кириллицей указывается его тип, далее цифрами – сопротивление в Ом при температуре 0 градусов Цельсия. Например, Pt100 – термометр платиновый, сопротивление термопреобразователя – 100 Ом при 0 градусов. Также есть несколько общепринятых сокращений:

  • ТПТ – технический платиновый термометр;
  • ТСПН – термометр, предназначенный для регистрации низких температур;
  • ЭТС – эталонные термометры сопротивления, которые используются для калибровки других датчиков.

Виды датчиков и их характеристики

Измерение температуры термометром сопротивления происходит с помощью одного или нескольких чувствительных элементов сопротивления и соединительных проводов, которые надежно спрятаны в защитном корпусе.

Классификация ТС происходит именно по типу чувствительного элемента.

Металлический термометр сопротивления по ГОСТ 6651-2009

Согласно ГОСТ 6651-2009 выделяют группу металлических термометров сопротивления, то есть ТС, чей чувствительный элемент — это небольшой резистор из металлической проволоки или пленки.

Платиновые измерители температуры

Платиновые ТС считаются самым распространёнными среди других видов, поэтому их часто устанавливают для контроля важных параметров. Диапазон измерения температуры лежит от -200 °С до 650 °С. Характеристика близка к линейной функции. Один из самых распространённых видов — Pt100 (Pt — платиновый, 100 — означает 100 Ом при 0 °С).

Никелевые термометры сопротивления

Никелевые ТС почти не используются в производстве за счет узкого температурного диапазона (от -60 °С до 180 °С) и сложностей эксплуатации, однако, следует отметить, что именно они имеют самый высокий температурный коэффициент 0,00617 °С-1.

Ранее такие датчики использовались в кораблестроении, однако, сейчас в этой отрасли их заменили на платиновые ТС.

Медные датчики (ТСМ)

Казалось бы, у медных датчиков диапазон использования еще уже, чем у никелевых (всего от -50 °С до 170 °С), но, тем не менее, именно они являются более популярным типом ТС.

Секрет в дешевизне прибора. Медные чувствительные элементы просты и неприхотливы в использовании, а также отлично подходят для измерения невысоких температур или сопутствующих параметров, например, температуры воздуха в цехе.

Срок службы такого устройства невелик, однако, и средняя стоимость медной ТС не слишком бьет по карману (около 1 тыс. рублей).

Терморезисторы

Терморезисторы — это термометр сопротивления, чей чувствительный элемент сделан из полупроводника. Это может быть оксид, галогенид или другие вещества с амфотерными свойствами.

Преимуществом данного прибора является не только высокий температурный коэффициент, но и возможность придать любую форму будущему изделию (от тонкой трубки до устройства длиной в несколько микрон). Как правило терморезисторы рассчитаны для измерения температуры от -100 °С до +200 °С.

Различают два вида терморезисторов:

  • термисторы — имеют отрицательный температурный коэффициент сопротивления, то есть при росте температуры, сопротивление уменьшается;
  • позисторы — имеют положительный температурный коэффициент сопротивления, то есть при увеличении температуры, сопротивление также возрастает.

Медные устройства и их параметры

Термопреобразователь сопротивления (медный) подходит только для газообразной среды. По параметру погрешности модификации довольно сильно отличаются. В первую очередь нужно рассмотреть термопреобразователи с допуском серии А. Используются они при температуре даже -50 градусов. Однако чувствительность у них не слишком хорошая. Данный параметр в среднем не превышает 34 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность в среднем равняется 0.5 градусов.

Показатель тепловой инерции в свою очередь доходит до 10 с. В данном случае максимальная возможная температура для моделей равняется 230 градусов. Допускаемый предел отклонений при этом доходит до 0.12 Т. Если говорить про конструктивные особенности, то клеммные головки у моделей данного типа отсутствуют. Герметик во многих конфигурациях используется с порошком. Непосредственно изоляторы часто применяются кремниевого типа. Если рассматривать термопреобразователи с допуском серии В, то они имеют чувствительность на уровне 40 мк. Все это говорит о том, что при температуре меньше 0 градусов погрешность может доходить до 0.45 градусов.

Рассматривая конструктивные особенности модификаций, важно отметить, что множество моделей оснащены клеммными коробками. В данном случае герметик стандартно применяется с порошком

Непосредственно зажимы устанавливаются в передней части корпуса. Защитная арматура чаще всего применяется с маркировкой 15Х.

Схема подключений

Для того, чтобы узнать значение сопротивления его надо измерить. Сделать это можно с помощью включения его в измерительную цепь. Для этого используют 3 типа схем, которые отличаются между собой количеством проводов и достигаемой точностью измерений:

  • 2-проводная цепь. Содержит минимальное количество проводов, а значит, самый дешевый вариант. Однако, при выборе данной схемы достичь оптимальной точности измерений не получится — к сопротивлению термометра будет прибавляться сопротивление используемых проводов, которые и будут вносить погрешность, зависимую от длины проводов. В промышленности такая схема применяется редко. Используется лишь для измерений, где не важна особая точность, а датчик находится в непосредственной близости от вторичного преобразователя. 2-проводная схема изображена на левом рисунке.
  • 3-проводная цепь. В отличии от предыдущего варианта здесь добавляется дополнительный провод, накоротко соединённый с одним из двух других измерительных. Его основная цель — возможность получить сопротивление подключенных проводов и вычесть это значение (компенсировать) из измеренного значения от датчика. Вторичный прибор, кроме основного измерения, дополнительно измеряет сопротивление между замкнутыми проводами, получая тем самым значение сопротивления проводов подключения от датчика до барьера или вторичника. Так как провода замкнуты, то это значение должно быть равно нулю, но по факту из-за большой длины проводов, это значение может достигать нескольких Ом. Далее эта погрешность вычитается из измеренного значения, получая более точные показания, за счёт компенсации сопротивления проводов. Такое подключение применяется в большинстве случаев, поскольку является компромиссом между необходимой точностью и приемлемой ценой. 3-х проводная схема изображена на центральном рисунке.
  • 4-проводная цепь. Цель такая же, что и при использовании трехпроводной схемы, но компенсация погрешности идёт обоих измерительных проводов. В трехпроводной схеме значение сопротивления обоих измерительных проводов принимается за одинаковое значение, но по факту оно может незначительно отличаться. За счет добавления ещё одного четвёртого провода в четырехпроводной схеме (закороченного со вторым измерительным проводом), удается получить отдельно его значение сопротивления и почти полностью компенсировать всё сопротивление от проводов. Однако, данная цепь является более дорогой, так как требуется четвёртый проводник и поэтому реализуется или на предприятиях с достаточным финансированием, или при измерении параметров, где нужна большая точность. 4-х проводную схему подключений вы можете увидеть на правом рисунке.

Спирали

Подобные элементы в значительной степени заменили проволочные в промышленности. Это особенно заметно в случае с 50 М термопреобразователями сопротивления. Эта конструкция имеет проволочную катушку, которая может свободно расширяться, в зависимости от температуры, и удерживаться на месте некоторой механической опорой, которая позволяет катушке сохранять свою форму.

Такая конструкция без натяжения позволяет чувствительному проводу расширяться и сжиматься без воздействия других материалов: в этом отношении он аналогичен SPRT, первичному стандарту, на котором основан ITS-90, обеспечивая при этом долговечность, необходимую для промышленного использования.

Основой чувствительного элемента является небольшая катушка из платиновой проволоки. Эта катушка напоминает нить в лампе накаливания. Корпус или оправка представляет собой твердо обожженную керамическую оксидную трубку с одинаково расположенными отверстиями, проходящими поперек осей. Катушка вставляется в отверстия оправки и затем упаковывается очень тонко измельченным керамическим порошком. Это позволяет сенсорному проводу двигаться, оставаясь при этом в хорошем тепловом контакте с процессом. Эти элементы работают при температуре до 850 °С.

Типы чувствительных элементов в платиновых термопреобразователях

На сегодняшний день выделяют следующие разновидности чувствительных элементов:

1. В виде «свободной от напряжения спирали».

2. В виде «полой конструкции».

3. Устройство из пленки.

4. Устройство из платины со стеклянной оболочкой.

Самым распространенным и надежным видом является «свободная от напряжения спираль», чаще всего его можно встретить у российских производителей. Внешне этот элемент может выглядеть по-разному – в зависимости от использованных материалов и величины отдельных деталей.

«Полая конструкция» – тип устройства, внедренный сравнительно недавно. Чаще всего он востребован на промышленных предприятиях, связанных с особым производством (например, в атомной промышленности). Тип конструкции данного сенсора обуславливает его значительную точность, надежность и стабильность в эксплуатации. Повышенная себестоимость материалов сборки делает эту деталь весьма дорогостоящей.

К числу чувствительных элементов, широко применяемых за рубежом, относится пленочный тип, при котором на керамическую подложку нанесен тонкий платиновый слой. Данная разновидность имеет массу преимуществ: невысокую стоимость, практичность, небольшие габариты и малый вес. Минусом устройства называют низкую стабильность, однако в последнее время проводятся постоянные разработки и исследования, направленные на устранение этого недостатка.

Устройство, представляющее собой платиновую проволоку с покрытием из стекла, можно назвать одной из наиболее функциональных за счет полной герметизации и устойчивости к высокой влажности. Тем не менее, использовать этот прибор можно лишь при определенном температурном режиме. Стоимость этого типа элемента относится к сегменту выше среднего.

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С -1 , диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий

Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al2O3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.

Миниатюрный пленочный датчик

Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.