История
Один из первых счетчиков альфа-частиц, разработанный Резерфордом и Гейгером.
Ранняя трубка Гейгера-Мюллера, изготовленная в 1932 году Гансом Гейгером для лабораторного использования.
В 1908 г. Ганс Гейгер, под присмотром Эрнест Резерфорд на Университет Виктории в Манчестере (теперь Манчестерский университет), разработал экспериментальную методику обнаружения альфа-частиц, которая позже будет использована для разработки трубки Гейгера-Мюллера в 1928 году. Этот ранний счетчик был способен обнаруживать только альфа-частицы и был частью более крупного экспериментального устройства. Используемый фундаментальный механизм ионизации был открыт Джон Сили Таунсенд между 1897 и 1901 гг., и известен как Выписка из Таунсенда, которая представляет собой ионизацию молекул ионным ударом.
Только в 1928 году Гейгер и Вальтер Мюллер (аспирант Гейгера) разработал герметичную трубку Гейгера – Мюллера, в которой использовались основные принципы ионизации, ранее использовавшиеся экспериментально. Маленький и прочный, он мог обнаруживать не только альфа- и бета-излучение, как это делали предыдущие модели, но также и гамма-излучение. Теперь практический радиационный прибор можно было производить относительно дешево, и так родился счетчик Гейгера. Поскольку выходной сигнал лампы требует небольшой электронной обработки, явное преимущество в термоэмиссионный клапан Благодаря минимальному количеству клапанов и низкому энергопотреблению прибор приобрел большую популярность как портативный детектор излучения.
Современные версии счетчика Гейгера используют галогеновую трубку, изобретенную в 1947 г. Сидни Х. Либсон. Она заменила более раннюю лампу Гейгера – Мюллера из-за ее гораздо более длительного срока службы и более низкого рабочего напряжения, обычно 400-900 вольт.
Параметры и режимы работы счетчика Гейгера
Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.
Также нужно смотреть на следующие параметры:
Рабочая зона, площадь входного окна
Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.
Рабочее напряжение
Напряжение должно соответствовать средним характеристикам. Сама характеристика работы — это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название – плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение – 400 Вольт.
Рабочая ширина
Рабочая ширина — разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение – 100 Вольт.
Наклон
Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение – 0,15 %.
Температура
Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.
Рабочий ресурс
Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.
Время восстановления
Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение – 10 микросекунд.
Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.
Виды счётчиков Гейгера
По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.
Классический
Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.
На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.
Плоский
Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 — название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.
Немного об ионизирующих излучениях
Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет — вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны — это γ-кванты.
Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:
- γ — фотон;
- α — ядро атома гелия;
- β — электрон с высокой энергией.
От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.
Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.
Как работает счетчик
Радиация не имеет опознавательных признаков (вкуса, цвета, запаха), без специальной аппаратуры невидимку не распознать. Идея счетчика радиоактивных частиц принадлежит немецким физикам Гейгеру и Мюллеру. Гейгер придумал, Мюллер воплотил идею в жизнь. Схема претерпела мало изменений за 90 лет, прошедших с выпуска первых приборов, настолько она проста и технически совершенна, на ее основе работает большинство современных дозиметров.
Рассмотрим принцип работы классического счетчика Гейгера на примере датчика СМБ-20. Детище компании Росатом представляет собой герметичный баллончик с проволочным анодом внутри. Анод (с зарядом плюс) и стальной корпус прибора (отрицательный катод), наполненный инертным газом, образуют конденсатор.
Ионизирующие частицы, ударяясь о стенки корпуса, выбивают из металла электроны. Прорываясь к аноду сквозь газовую среду, электроны сталкиваются с молекулами газа и пополняют компанию новыми частицами. Напряжение в несколько сотен вольт между полюсами ускоряет процесс, превращает электронный поток в лавину. Газовое наполнение становится проводником. Сила тока резко возрастает. Регистрирующее устройство фиксирует скачок. Одновременно импульс вызывает падение напряжения на встроенном резисторе (высокоомное сопротивление), разность потенциалов между анодом и катодом уменьшается, разряд гасится, и счетчик готов ловить следующую частицу.
Цилиндрический СМБ-20 фиксирует гамма и жесткое бета-излучение, вызванное энергетически активными частицами с высокой проникающей способностью. Для обнаружения мягкого бета-излучения используют плоские счетчики (БЕТА -2) круглые или прямоугольной формы со слюдяным окошком, пропускающим частицы, не способные пробить металлический корпус. Здесь используется тот же принцип работы.
Альфа-частицы плохо распознаются приборами, поскольку активно взаимодействуют с окружающей средой и моментально теряют энергию. Обычный счетчик ловит α-излучение только на расстоянии нескольких сантиметров от источника.
Альфа, бета, гамма и конструкция счетчиков
Альфа-излучение задерживается бумажкой. Бета-излучение можно экранировать листом оргстекла. А от жесткого гамма-излучения нужно строить стену из свинцовых кирпичей. Это знают, пожалуй, все. И все это имеет прямое отношение к счетчикам Гейгера: чтобы он почувствовал излучение, нужно, чтобы оно, как минимум, проникло внутрь. А еще оно должно не пролететь навылет, как нейтрино сквозь Землю.
Альфа бета гамма излучение/
Счетчик типа СБМ-20 (и его старший брат СБМ-19 и младшие СБМ-10 и СБМ-21) имеют металлический корпус, в котором нет никаких специальных входных окон. Из этого вытекает, что ни о какой чувствительности к альфа-излучению речи не идет. Бета-лучи он чувствует достаточно неплохо, но только если они достаточно жесткие, чтобы проникнуть внутрь. Это где-то от 300 кэВ. А вот гамма-излучение он чувствует, начиная с пары десятков кэВ.
А счетчики СБТ-10 и СИ-8Б (а также новомодные и малодоступные из-за ломовых цен Бета-1,2 и 5) вместо сплошной стальной оболочки имеют обширное окно из тонкой слюды. Через это окно способны проникнуть бета-частицы с энергией свыше 100-150 кэВ, что позволяет увидеть загрязнение углеродом-14, которое абсолютно невидимо для стальных счетчиков. Также окно из слюды позволяет счетчику чувствовать альфа-частицы.
Правда, в отношении последних надо смотреть на толщину слюды конкретных счетчиков. Так, СБТ-10 с его толстой слюдой его практически не видит, а у Беты-1 и 2 слюда тоньше, что дает эффективность регистрации альфа-частиц плутония-239 около 20%. СИ-8Б — где-то посередине между ними.
А вот теперь что касается пролета насквозь. Дело в том, что альфа- и бета-частицы счетчик Гейгера регистрирует практически все, что смогли проникнуть внутрь. А вот с гамма-квантами все печально. Чтобы гамма-квант вызвал импульс в счетчике, он должен выбить из его стенки электрон. Этот электрон должен преодолеть толщу металла от точки, где произошло взаимодействие, до внутренней поверхности, и поэтому «рабочий объем» детектора, где происходит его взаимодействие с фотонами гамма-излучения — это тончайший, в несколько микрон, слой металла. Отсюда ясно, что эффективность счетчика для гамма-излучения очень мала — в сто и более раз меньше, чем для бета-излучения.
Принцип действия счётчика Гейгера
По своей конструкции счетчик Гейгера довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается высокое напряжение (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.
Обратный процесс, в результате которого газовая среда возвращается в исходное состояние, происходит сам собой. Под воздействием галогенов (обычно используется бром или хлор) в данной среде происходит интенсивная рекомбинация зарядов. Процесс этот происходит значительно медленнее, а потому время, необходимое для восстановления чувствительности счетчика Гейгера, – очень важная паспортная характеристика прибора.
Несмотря на то что принцип действия счетчика Гейгера довольно прост, он способен реагировать на ионизирующие излучения самых различных видов. Это α-, β-, γ-, а также рентгеновское, нейтронное и ультрафиолетовое излучения. Все зависит от конструкции прибора. Так, входное окно счетчика Гейгера, способного регистрировать α- и мягкое β-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового – из кварца.
КОД
Напишем код для определения количества радиации.
Arduino
#include <SPI.h>
#define LOG_PERIOD 15000 //Период регистрации в миллисекундах, рекомендуемое значение 15000-60000.
#define MAX_PERIOD 60000 //Максимальный период регистрации.
unsigned long counts; //
unsigned long cpm; //
unsigned int multiplier; //
unsigned long previousMillis; //
float uSv; // Переменная для перевода в микроЗиверты
float ratio = 151.0; // Коофициент для перевода импульсов в микроЗиверты
float uP = 0;
const byte interruptPin = D2; // Порт ESP к которому подключен счетчик
void tube_impulse(){ //Функция подсчета имульсов
counts++;
}
void setup(){ //
counts = 0;
cpm = 0;
multiplier = MAX_PERIOD / LOG_PERIOD;
Serial.begin(9600);
interrupts();
pinMode(interruptPin, INPUT);
attachInterrupt(digitalPinToInterrupt(interruptPin), tube_impulse, FALLING); //Определяем количество импульсов через внешнее прерывание на порту
}
void loop(){ //Основной цикл
unsigned long currentMillis = millis();
if(currentMillis — previousMillis > LOG_PERIOD){
previousMillis = currentMillis;
cpm = counts * multiplier;
Serial.println(cpm);
uSv = cpm / ratio ;
Serial.println(uSv);
uP = uSv * 100 ;
Serial.println(uP);
counts = 0;
}
}
1 |
#include <SPI.h> unsignedlongcounts;// unsignedlongcpm;// unsignedintmultiplier;// unsignedlongpreviousMillis;// floatuSv;// Переменная для перевода в микроЗиверты floatratio=151.0;// Коофициент для перевода импульсов в микроЗиверты floatuP=; constbyteinterruptPin=D2;// Порт ESP к которому подключен счетчик voidtube_impulse(){//Функция подсчета имульсов counts++; } voidsetup(){// counts=; cpm=; multiplier=MAX_PERIOD/LOG_PERIOD; Serial.begin(9600); interrupts(); pinMode(interruptPin,INPUT); attachInterrupt(digitalPinToInterrupt(interruptPin),tube_impulse,FALLING);//Определяем количество импульсов через внешнее прерывание на порту
} voidloop(){//Основной цикл unsignedlongcurrentMillis=millis(); if(currentMillis-previousMillis>LOG_PERIOD){ previousMillis=currentMillis; cpm=counts*multiplier; Serial.println(cpm); uSv=cpm/ratio; Serial.println(uSv); uP=uSv*100; Serial.println(uP); counts=; } } |
Расписывать код не вижу смысла. Он неплохо прокомментирован. Основной принцип подсчета сводиться, к подсчету количества импульсов от трубки J350Br, используя прерывание на порту D2. После того как получили количество импульсов, переводим наши «попугаи» в микрозиверты и микрорентгены. Конечно без калибровки наши данные так и останутся «попугаями», поэтому лучше всего найти эталонный источник радиации и попробовать откалибровать наш счетчик.
Жизнь
Счетчик Гейгера, 1932 год. Музей науки в Лондоне .
С 1902 года Ганс Гейгер изучал физику и математику в Эрлангене , где он был членом братства Бубенройта и в первые два семестра прошел годичную военную службу на стороне. В 1904 году он также провел семестр в Университете Людвига Максимилиана в Мюнхене . В 1906 году он сдал второй государственный экзамен и получил докторскую степень в Эрлангене под руководством Эйльхарда Видемана за работу по измерениям излучения, температуры и потенциала в разрядных трубках с сильными токами . После окончания университета он стал ассистентом Артура Шустера из Манчестера и оставался им с 1907 года при его преемнике Эрнесте Резерфорде , чья атомная модель , расположенная в 1911 году, была частично основана на открытиях Гейгера (см. Рассеяние Резерфорда ). Помимо Резерфорда, он также работал с Эрнестом Марсденом . По окончании своего пребывания в Манчестере в 1912 году Гейгер считался международным авторитетом в области измерения радиоактивности, что также нашло отражение в книге с Вильгельмом Маковером.
В 1912 Гейгер вернулся в Германию в Physikalisch-Technische Reichsanstalt в Берлине -Charlottenburg, где он создал лабораторию по радиоактивности и работал с Джеймсом Чедвик , который последовал за ним из Манчестера и кого он также поддерживает во время своего интернирования во время Первой мировой войны , а также с Вальтером Боте . Во время Первой мировой войны он служил офицером артиллерии и работал в газовых войсках Фрица Габера ( 35-й пионерский полк ) на газовой войне. После завершения своей абилитации в Берлине в 1924 году Гейгер перешел в Университет Христиана Альбрехта в Киле в 1925 году в качестве профессора . С 1924 по 1925 год он и Боте ввели метод измерения совпадений , который они использовали для изучения эффекта Комптона . За этот эксперимент Боте позже получил Нобелевскую премию — после смерти Гейгера. Среди прочего, своим экспериментом они также продемонстрировали справедливость законов сохранения энергии и импульса на атомном уровне, что временами подвергалось сомнению (среди прочего, Нильсом Бором ). Вместе со своим докторантом Вальтером Мюллером в 1928 году он разработал в Киле счетную трубку Гейгера-Мюллера (широко известную как «счетчик Гейгера»), которая была представлена публике в 1929 году.
В 1929 году Гейгер перешел в Университет Эберхарда Карлса в Тюбингене и, наконец, стал директором Физического института Берлинского технического университета в 1936 году как преемник Густава Герца, которого национал-социалисты вынудили уйти с должности . Там он, в частности, занимался космическими лучами .
Карл Шил и Ганс Гейгер (1928)
Geiger был основателем и главным редактором Zeitschrift für Physik с Карлом Шеель в 1920 году и был одним из редакторов до 1945. После смерти Шееля он был главным редактором с 1936 года. В 1926 году он был редактором справочника по физике в Springer Verlag.
В 1939 году он принимал участие в учредительных собраниях Урановой ассоциации, и его совет об активизации исследований в области ядерной энергии имел решающее значение на их встрече в сентябре. На заседании Исследовательского совета Рейха в 1942 г., посвященном дальнейшей поддержке исследований в области ядерной энергии, он высказался против дальнейшего продолжения работы.
Ханс Гейгер скончался 24 сентября 1945 года, вскоре после того, как его дом в Потсдаме был освобожден (он находился в закрытой зоне конференции союзных держав-победителей в Потсдаме) в больнице. Он уже ушел со своих научных постов в 1942 году из-за серьезного ревматического заболевания.
Ханса Гейгера похоронили на Новом кладбище в Потсдаме . Его могила сохранилась. Семья, переехавшая в Западный Берлин, установила второе надгробие на кладбище Грюневальд , которое также сохранилось.
В 1929 году он получил медаль Хьюза Королевского общества , в 1937 году медаль Дадделла Лондонского физического общества и в 1934 году премию Аррениуса Академической издательской ассоциации Лейпцига. С 1932 г. он был членом-корреспондентом Саксонской академии наук, а с 1936 г. — членом Прусской академии наук . С 1936 г. он был членом правления Немецкого физического общества . В 1935 году он был избран членом Леопольдина, а в 1937 году членом-корреспондентом Геттингенской академии наук .
Одним из его докторантов является Отто Хаксель , который также был его ассистентом в TH Berlin.
В 1970 году его именем был назван кратер на Луне, а в 2000 году — астероид (14413) Гейгера . Гимназия Ганса-Гейгера в Киль-Эллербеке и лекционный зал физического центра Университета Христиана Альбрехта в Киле также названы его именем, а также начальная школа и улица в его родном городе Нойштадт; в других городах его именем названы новые дороги.
Фото счетчика Гейгера
Также рекомендуем просмотреть:
- Полировка фар своими руками
- Строительные леса своими руками
- Точилка для ножей своими руками
- Антенный усилитель
- Восстановление аккумулятора
- Мини паяльник
- Как сделать электрогитару
- Оплетка на руль
- Фонарик своими руками
- Как заточить нож для мясорубки
- Электрогенератор своими руками
- Солнечная батарея своими руками
- Течет смеситель
- Как выкрутить сломанный болт
- Зарядное устройство своими руками
- Схема металлоискателя
- Станок для сверления
- Нарезка пластиковых бутылок
- Аквариум в стене
- Врезка в трубу
- Стеллаж в гараж своими руками
- Симисторный регулятор мощности
- Фильтр низких частот
- Вечный фонарик
- Нож из напильника
- Усилитель звука своими руками
- Трос в оплетке
- Пескоструйный аппарат своими руками
- Генератор дыма
- Ветрогенератор своими руками
- Акустический выключатель
- Воскотопка своими руками
- Туристический топор
- Стельки с подогревом
- Паяльная паста
- Полка для инструмента
- Пресс из домкрата
- Золото из радиодеталей
- Штанга своими руками
- Как установить розетку
- Ночник своими руками
- Аудио передатчик
- Датчик влажности почвы
- Древесный уголь
- Wi-Fi антенна
- Электровелосипед своими руками
- Ремонт смесителя
- Индукционное отопление
- Стол из эпоксидной смолы
- Трещина на лобовом стекле
- Эпоксидная смола
- Как поменять кран под давлением
- Кристаллы в домашних условиях
Помогите проекту, поделитесь в соцсетях 😉
Устройство и принцип работы счетчика Гейгера
Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.
Проволока называется анодом, а трубка — катодом. Вместе они — электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке — плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.
Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.
При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет — это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.
Необходимые компоненты схемы детектора
Для того чтобы собрать представленную схему потребуются приобрести следующие детали:
- Преобразователь высокого напряжения NoEnName_Null. Вход 3–5 В, выход до 300–1200 В. Размер модуля: около: 25×48 мм. Выходной ток максимум 50 мА, регулируемый модуль блока питания.
- Зарядное устройство Tikta Mini MICRO USB 1A TP4056. Литий-ионная плата 1×5 V позволяет заряжать аккумулятор с помощью разъема Mini USB или входа 4.5–5.5 В.
- Преобразователь напряжения DROK Mini DC Volts 1V — 5V, неизолированный модуль BOOST. Размеры печатной платы: 14.1×18.8×5.5 мм, входное напряжение: 1–5 В постоянного тока, выходное напряжение: 5.1–5.2 В постоянного тока, одиночный литиевый вход с выходным током 1–1.5 A.
- Arduino Nano V3.0 — плата ELEGOO Nano CH340 / ATmega328P без USB-кабеля. Совместимая с Arduino Nano V3.0.Nano использует чипы ATmega328P и CH340, с большим количеством аналоговых входных контактов и встроенной перемычкой + 5V AREF. Есть возможности макета Boarduino и Mini + USB с меньшими размерами, которое хорошо работает с Mini или Basic Stamp. Может получать питание через USB-соединение Mini-B, нерегулируемый внешний источник питания 7–12 В (контакт 30) или регулируемый внешний источник питания 5 В (контакт 27). Источник питания автоматически выбирает источник с самым высоким напряжением.
- OLED-дисплей HiLetgo 0,91 » для Arduino STM32, подсветка не нужна, поскольку имеется самоподсветка. Цвет дисплея: синий. Использует распространенную шину I2C и работает на драйвере дисплея SSD1306. OLED с высоким разрешением для любого проекта микроконтроллера. 128×32 пикселей дает хороший четкий текст, может работать от 3.3 В. Разборчивый текст даже с 4-мя строками. Напряжение 5 В.
- Комплект резисторов 10М и 10К, соответствующих требованиям RoHS.
- Монолитный многослойный керамический конденсатор 470pf Hilitchi 550Pcs, допуск емкости: ± 5%. Основной материал: керамика. Цвет: желтый. Отличная влагостойкость, миниатюрный размер, большая емкость, надежная работа. Широкое применение в компьютерах, обработке данных, телекоммуникациях и промышленном управлении.
- Мини-кнопочный переключатель DPDT с мгновенным выходом, uxcell 6-контактный квадратный 7×7 мм, количество контактов: 6, шаг штифта: 4.5×1 мм, длина штифта 3.5 мм. Материал пластик, вес: 24 г.
Немного об ионизирующих излучениях
Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет – вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны – это γ-кванты.
Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:
- γ – фотон;
- α – ядро атома гелия;
- β – электрон с высокой энергией.
От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.
Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.