Фототранзисторы
Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя p–n переходами.
Фототранзисторы, как и обычные транзисторы могут быть p–n–р и n–p–n типа. Конструктивно фототранзистор выполнен так, что световой поток облучает область базы. Наибольшее практическое применение нашло включение фототранзистора в схеме с ОЭ, при этом нагрузка включается в коллекторную цепь. Входным сигналом фототранзистора является модулированный световой поток, а выходным – изменение напряжения на резисторе нагрузки в коллекторной цепи.
Напряжение питания на фототранзистор подают как и на обычный биполярный транзистор, работающий в активном режиме, т.е. эмиттерный переход смещен в прямом направлении, а коллекторный в обратном (рис. 8.11,а).
Рис. 8.11. Схемы включения фототранзистора с подключенной базой (а) и со свободной базой (б) и вольтамперные характеристики
Однако он может работать и с отключенным выводом базы (рис. 8.11,б), а напряжение прикладывается между эмиттером и коллектором. Такое включение называется включением с плавающей базой и характерно только для фототранзисторов. При этом фототранзистор работает в активном режиме ближе к границе отсечки.
При Ф = 0 ток очень мал и равен темновому току
. (8.9)
где h21б – коэффициент передачи эмиттерного тока.
Рассмотрим принцип работы фототранзистора при включении с плавающей базой. При освещении фототранзистора под действием света в базовой области и коллекторном переходе образуются свободные носители заряда, эти носители диффундируют в базе к коллекторному переходу. Неосновные носители области базы (для транзистора n–p–n типа) – электроны экстрагируют в область коллектора, создавая фототок в коллекторном переходе. Оставшиеся в объеме базы основные носители (дырки), создают положительный объемный заряд и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода.
Потенциальный барьер эмиттерного перехода снижается, что увеличивает инжекцию основных носителей (электронов) в область базы. Часть этих электронов рекомбинирует в базе с дырками, а большая часть экстрагирует через коллекторный переход, увеличивая его ток. Таким образом, ток в коллекторной цепи равен сумме фототока Iф и тока Iк, инжектированных эмиттером электронов, дошедших к коллекторному переходу и втянутых его электрическим полем в область коллектора. При Rк = 0, коэффициент усиления фототока равен
. (8.10)
Фототранзистор увеличивает чувствительность в h21э+1 раз по сравнению с фотодиодом, что является главным преимуществом фототранзистора по сравнению с фотодиодом.
Для обеспечения температурной стабильности энергетических параметров одновременно с оптическим управлением используется так же подача напряжения смещения на базу для выбора рабочей точки на входной и выходной характеристиках транзистора. При отсутствии оптического потока темновой ток определяется током базы, что позволяет дополнительно управлять током фототранзистора. Задание определенного темнового тока позволяет обеспечить оптимальный режим усиления слабых световых сигналов, а также суммировать их с электрическими.
Наряду с фототранзисторами n–p–n и p–n–р типов используются полевые фототранзисторы с управляющим p–n переходом и МОП-транзисторы.
На рис. 8.12 представлен полевой фототранзистор с управляющим
p–n переходом и каналом n–типа. Падающий световой поток генерирует в n–канале и p–n переходе (канал–затвор) электроны и дырки. Электрическое поле перехода разделяет носители заряда. Концентрация электронов в n–канале повышается, и уменьшается его сопротивление, а ток стока возрастает. Увеличение дырок в p–области вызывает появление фототока в цепи затвора.
Рис.8.12. Структурная схема полевого фототранзистора с управляющим p-n переходом и каналом n- типа
Переход затвор–канал можно рассматривать как фотодиод, фототок которого Iз (ток затвора) создает падение напряжения на резисторе Rз, что приводит к уменьшению обратного напряжения на p–n переходе канал–затвор. Это вызывает дополнительное увеличение толщины канала, уменьшение его сопротивления и приводит к возрастанию тока стока.
МОП-фототранзисторы с индуцированным каналом имеют полупрозрачный затвор, через который световой поток попадает на полупроводник под затвором. В этой области полупроводника генерируются носители заряда, что приводит к изменению значения порогового напряжения, при котором возникает индуцированный канал. Для установления начального режима иногда на затвор подают напряжение смещения.
Маркировки и основные параметры
Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.
Фото — обозначение транзисторов
При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки)
Обратите внимание, цоколевка показана также, как у обычных транзисторов
Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.
Фоторезистор: принцип работы, где применяется и как выглядит
Фоторезисторы (фотоэлектрические приборы – это приборы, которые могут изменять свои технические характеристики под влиянием света. Нашли свое применение такие приборы во всей электрики и электронике.
Их значение переоценить крайне сложно. Сам термин фоторезистор говорит за себя. Они изменяют сопротивление под влиянием светового потока.
Такой резистор может иметь номинальное сопротивление 1-200 ОМ, но на свету, оно может уменьшиться в десятки и даже сотни раз.
Основное преимущество этих радиодеталей – зависимость сопротивления от степени освещения. Именно поэтому их можно использовать в различных датчиках или измерителях освещенности. Но есть и ряд недостатков – с ними не удобно работать по причине высокого сопротивления.
В данной статье будут рассмотрены все характеристики и особенности фоторезисторов, а также приведены все необходимые расчеты. В качестве бонуса, в статье содержится видеоролик и скачиваемый файл, где содержится интересная дополнительная информация.
Как работает фоторезистор
В полной темноте, сопротивление этих радио компонентов огромное, может доходить до десятков МОм, но как только элемент подвергается воздействию света, его сопротивление резко снижается до долей Ома. Фоторезисторы (ФР) обладают высокой чувствительностью в достаточно широком диапазоне (от инфракрасного до рентгеновского спектра), которая и зависит от длины волны светового потока. Эти радио компоненты все еще применяются во многих электронных устройствах благодаря их высокой стабильности во времени, малым размерам и богатым номиналам сопротивлений.
Алгоритм поиска неисправности
Визуальный осмотр
Любой ремонт начинается с внешнего осмотра платы
Нужно без приборов просмотреть все узлы и особое внимание обратить на пожелтевшие, почерневшие части и узлы со следами сажи или нагара. При внешнем осмотре вам может помочь увеличительное стекло или микроскоп, если вы работаете с плотным монтажом SMD компонентов
Разорванные детали могут указывать не только на локальную проблему, но и проблему в элементах обвязки этой детали. Например, взорвавшийся транзистор мог за собой утянуть и пару элементов в обвязке.
Не всегда пожелтевшая от температуры область на плате указывает на последствия выгорания детали. Иногда так получается в результате долгой работы прибора, при проверке все детали могут оказаться целыми.
Кроме осмотра внешних дефектов и следов гари стоит и принюхаться, чтобы проверить, нет ли неприятного запаха как от горелой резины. Если вы нашли почерневший элемент – нужно его проверить. У него может быть одна из трёх неисправностей:
Иногда поломка бывает столь очевидной, что её можно определить и без мультиметра, как в примере на фото:
Проверка резистора на обрыв
Проверить исправность можно обычной прозвонкой или тестером в режиме проверки диодов со звуковой индикацией (см. фото ниже). Стоит отметить, что прозвонкой можно проверить лишь резисторы сопротивлением в единицы Ом — десятки кОм. А 100 кОм уже не каждая прозвонка осилит.
Для проверки нужно просто подключить оба щупа к выводам резистора, неважно это СМД компонент или выводной. Быструю проверку можно провести без выпаивания, после чего всё же выпаять подозрительные элементы и проверить повторно на обрыв
Внимание! При проверке детали не выпаивая с печатной платы, будьте внимательны – вас могут ввести в заблуждение параллельно стоящие элементы. Это актуально как при проверке без приборов, так и при проверке мультиметром
Не ленитесь и лучше выпаяйте подозрительную деталь. Так можно проверить только те резисторы, где вы уверены, что параллельно им в цепи ничего не установлено.
Проверка короткого замыкания
Кроме обрыва, резистор могло пробить накоротко. Если вы используете прозвонку – она должна быть низкоомной, например на лампе накаливания. Т.к. высокоомные светодиодные прозвонки «звонят» цепи сопротивлением и в десятки кОм без существенных изменений яркости свечения. Звуковые индикаторы с этой проверкой справляются лучше чем светодиоды. По частоте пищания можно судить о целостности цепи, на первом месте по достоверности находятся сложные измерительные приборы, такие как мультиметр и омметр.
Проверка на КЗ проводится одним способом, рассмотрим инструкцию пошагово:
- Измерить омметром, прозвонкой или другим прибором участок цепи.
- Если его сопротивление стремится к нулю и прозвонка указывает на замыкание, выпаивают подозрительный элемент.
- Проверить участок цепи уже без элемента, если КЗ ушло – вы нашли неисправности, если нет – выпаивают соседние, пока оно не уйдет.
- Остальные элементы монтируют обратно, тот после которого КЗ ушло заменяют.
- Проверить результаты работы на наличие КЗ.
Читать также: Какая стиральная машина бош самая лучшая
Вот наглядный пример того, что сгоревший резистор оставил следы на соседних резисторах, есть вероятность, что и они повреждены:
Резистор почернел от высокой температуры, на соседних элементах видны не только следы гари, но и следы перегретой краски, её цвет изменился, часть токопроводящего резистивного слоя могла повредиться.
На видео ниже наглядно показывается, как проверить резистор мультиметром:
Подключение фотореле
Стандартная схема подключения фотореле в системе управления освещением представлена на рисунке ниже.
Обратите внимание, что к нему подводится и фазный проводник, и нейтральный. Это делается для того, чтобы обеспечить питанием чувствительную часть схемы
На практике клеммная коробка фотореле имеет три вывода. Они обозначены символами L – подключение фазы, N – нейтраль и R – нагрузка. Традиционно нагрузочный проводник выполняется черного или темно-коричневого цвета. Нейтраль желтого, а фазная линия – синего цвета. Однако могут быть варианты, поэтому за буквенными обозначениями следить надо обязательно.
Фотореле с магнитным пускателем
Мощность, на которую рассчитано фотореле, ограничивается электрической прочностью силовых контактов. Обычно рабочие токи для этого элемента автоматики не превышают 15 ампер. Например, у популярной модели ФР 601, используемой для управления уличным освещением, максимальная мощность нагрузки 1100 Вт, а рабочий ток 10 ампер.
Как следует поступить, когда требуется включать, например, уличные газоразрядные лампы ДРЛ ДНаТ 1000, токи запуска которых 12,5 ампер? В этом случае управление осуществляется через магнитный пускатель. Схема подключения фотореле ФР 601 с ним приведена на рисунке ниже.
Нагрузочный выход фотореле включается в цепь втягивающей катушки пускателя, к основной контактной группе которого подключается коммутируемая линия.
Фотореле параллельно с выключателем
В ряде случаев имеет смысл включать фотореле вместе с выключателем. Ведь возможно, что включить свет вам понадобится ранее наступления темного времени суток. Сделать это надо так, чтобы контакты силового реле были параллельны контактам выключателя. Главным условием правильной работы этой схемы является то, что к нагрузке должна подводиться одна и та же фаза.
Фотореле вместе с таймером
В сельских населенных пунктах практикуется правило, что уличное освещение включается с наступлением темного времени суток, но работает оно не всю ночь, а до, например, 23:00. Для реализации этого решения нагрузочный контакт фотореле подключается ко входу таймера. А тот, в свою очередь, к управляемому прибору.
Фотоэлектрическая схема является частью многих элементов автоматических систем. Например, датчиков движения. Но на этом ее возможности не ограничиваются. Она также встречается в составе звукозаписывающего оборудования. С помощью света можно дистанционно управлять токами большой силы, для чего используются особые приборы – фототиристоры и симисторы. Вы можете сами придумать оригинальную схему на ее основе, которая будет выполнять специфические задачи.
Фототранзисторные схемы
Как и в случае с фотодиодами, целью фототранзисторов является создание пригодного для использования выходного напряжения из генерируемого светом тока. Поскольку усиление уже встроено в полупроводниковую структуру фототранзисторов, нам не нужен трансимпедансный усилитель на базе ОУ. Вместо этого мы можем использовать схемы усилителей, которые мы уже знаем по несветочувствительным приложениям на биполярных транзисторах.
Схемы с общим коллектором и общим эмиттером являются жизнеспособными вариантами преобразования света в напряжение. Я предпочитаю подход с общим эмиттером, потому что считаю его более интуитивно понятным. Но вам может понравиться усилитель с общим коллектором, если вы предпочитаете избегать инверсии, то есть если вы хотите, чтобы более высокая освещенность создавала более высокое выходное напряжение.
Рисунок 3 – Вы можете использовать схему усилителя с общим коллектором или с общим эмиттером, чтобы превратить ваш фототранзистор в преобразователь освещенности в напряжение
Биполярный фототранзистор. Устройство и принцип действия.
Рис. 1 Один из возможных вариантов конструкции фототранзистора показан на Рис.1. Как видно из этого рисунка, фототранзистор отличается от обычного транзистора лишь прозрачным окном в корпусе; через него световой поток падает на пластину полупроводника, служащую базой, в центре которой путем вплавления создан коллекторный переход.
Возможны и другие варианты расположения электродов, например кольцеобразный коллектор на освещаемой поверхности базы.
Устройство и схема включения биполярного фототранзистора также показаны на Рис.2.а.
Фототранзистор состоит из:
1 — эмиттерной области р+- типа;
2 — области базы n- типа, большая часть которой пассивна и открыта световому потоку;
3 — широкой коллекторной области р- типа.
Рис.2
Пассивная часть базы расположена на Рис.2.а слева от штрих пунктирной линии. Фототранзистор, как правило, включается по схеме ОЭ с резистором нагрузки Rн в коллекторной цепи (Рис.2.а). Входным сигналом фототранзистора является модулированный световой поток, а выходным — изменение напряжения на его коллекторе.
Типовая спектральная чувствительность кремниевого фототранзистора
Рассмотрим принцип работы фототранзистора в схеме с разорванной цепью базы. Оптический сигнал генерирует в коллекторном переходе и области пассивной базы носители. Эти носители диффундируют в базе к коллекторному переходу и разделяются его электрическим полем. Не основные носители создают фототок коллекторного перехода, а основные накапливаются в базе и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода. Потенциальный барьер перехода снижается, что усиливает инжекцию носителей из эмиттера в базу. Инжектированные носители диффундируют через базу к коллекторному переходу и втягиваются его электрическим полем в область коллектора. Ток инжектированных носителей, а соответственно и образованный ими коллекторный ток многократно превышает фототок оптически генерируемых носителей.
Общий ток коллектора — это сумма фототока Iфб и тока Iкр инжектированных эмиттером дырок, прошедших коллекторный переход.
Коэффициент усиления фототока:
М=(Iфв+Iкр)/Iфб=β+1, если , (1)
где β — статический коэффициент передачи по току транзистора в схеме с ОЭ.
Усиленный в М раз фототок создает падение напряжения на резисторе нагрузки Rн, изменяя напряжение коллектора на:
, (2)
Из этого соотношения следует, что фототранзистор можно представить в виде эквивалентного фотодиода VD и усилительного транзистора VT (Рис.2.б). Эквивалентный фотодиод образован пассивной базой и областью коллектора слева от штрих-пунктирной линии на Рис.2.а, структура усилительного транзистора расположена справа от этой линии. Транзистор увеличил чувствительность эквивалентного фотодиода в ( β+1) раз.
Вывод базы Б фототранзистора иногда используется для подачи смещения при выборе рабочей точки на входной и выходной характеристиках транзистора и обеспечения ее температурной стабилизации.
Семейство выходных характеристик фототранзистора в схеме с ОЭ приведено на Рис.2.в. Фототок образован генерируемыми в области базы неравновесными носителями.
Каким может быть фотореле
- Управление порогом срабатывания есть у всех современных моделей.
- Дополнительной функцией программирования снабжаются самые дорогие разновидности. Например, отдельная программа устанавливается для управленияна каждое время года. И отдельно по временам суток.
- Наличие выносных датчиков характерно для фр, которые не предназначены для монтажа на улице. Достаточно использовать 2 провода, чтобы подключить такой датчик к внутренней схеме.
- Вообще датчики у простых фр 602 бывают либо выносными, либо встроенными.
- Само фр имеет разное назначение. Например, подходит для установки на улице, тогда продаётся внутри герметичного корпуса. А есть варианты для внутренней установки на рейку электрощита с обозначением Din.
- Реже всего можно встретить самодельные фр, внутри которых вместе собираются датчик движения и таймер, фотоэлементы. Такие конструкции самые дорогие. Снабжаются обычно специальными электронными табло, благодаря которому работа освещения настраивается максимально точно.
- Чаще можно найти приборы, где схема совмещает фотодатчики и устройства, реагирующие на движение.
Фототранзисторы
Фототранзисторы отличаются от фотодиодов дополнительным усилением фототока на эмяттерном р-п переходе. Фототранзисторы могут работать как фотодиоды (режим с плавающей базой), так и в транзисторном режиме с источником смещения в базовой цепи. Вывод эмиттера фототранзистора маркируется цветной точкой на корпусе или цветной меткой на проволочном выводе. Фототранзисторы выпускают в металлостеклянном корпусе с входным окном базы в двух конструктивных оформлениях, как с отдельным электрическим выводом базы, так и без него. Основные параметры фототранзисторов приведены в таблице, внешний вид фототранзисторов показан на рисунке 1. Тип
Площадь фото-чувстви-тельного элемента, мм2 | Основные параметры при температуре 20±5°С | |||||||
Диапазон спектральной характеристики дельта лямбда,мкм | Максимальная спектральная характеристика дельта лямбда, max, мкм | Рабочее напряжение Uр, В | Темновой ток Iт, мкА | Интегральная токовая чувствительность S1 инт, мкА/Лк, не менее | Ипульсная постоянная времени tи, с, не более | Масса, г не более | ||
ФТ-1К | 2,8 | 0.5 … 1.12 | 0.8 … 0.9 | 5 | 3 | (0.4) | 8e-5 | 0.9 |
ФТ-2К | 2,8 | 0.5 … 1.12 | 0.8 … 0.9 | 5 | 3 | (0.4) | 8e-5 | 0.9 |
ФТ-1Г | 3 | 0.4 … 1.8 | 1.5 … 1.6 | 1 … 5 | 300 | 0.2 | 2e-4 | 1.5 |
ФТ-2Г | 1 | 0.4 … 1.8 | 1.5 … 1.6 | 12 … 24 | 500 | 2 | 1e-5 | 1.5 |
ФТ-3Г | 3 | 0.4 … 1.8 | 1.5 … 1.6 | 10 … 12 | 1000 | 2 … 7 | 1e-4 | 1.5 |
ФТГ-3 | 3 | 0.4 … 1.8 | 1.5 … 1.55 | 5 … 10 | 60 | 1 | 1(2 … 10)e-5 | 1.8 |
ФТГ-4 | 3 | 0.4 … 1.8 | 1.5 … 1.55 | 5 … 10 | 40 | 3 | 3(2 … 10)e-5 | 1.8 |
ФТГ-5 | 3 | 0.4 … 1.8 | 1.5 … 1.55 | 5 … 10 | 50 | 1 | (1 … 2)e-5 | 1.8 |
Рис. 1
Щелкните мышью для увеличения
ТИП | Фототок IF,мкА | Темновой ток IT,мкА | Время нарастания импульса tн,нС | Обратное напряжение UОБР(UНАС) В | Режим Измерения |
КТФ102А | 200 | 1.0 | 500 | 50 (0.5) | Ее=60мВт/ср RНАГР=15 кОм |
КТФ102А1 | 800 | 0,5 | |||
КТФ102А2 | |||||
КТФ104А | 150 | 1.0 | 800 | 0,5 | Ее=7 Лк |
КТФ104Б | 100 | 5.0 | |||
КТФ104В | 50 |
(C) МРБ выпуск 1168, Н.В.Пароль, С.А.Кайдалов, Фоточувствительные приборы и их применение: справочник, М., «Радио и связь», 1991г.
(С) from Александр Кузнецов,
www.diagram.com.ua
Импортные фототранзисторы
Наименование | Описание | |
1 | L-610MP4BT/BD | NPN черный пластиковый фототранзистор |
2 | L-32P3C | T-1 (3мм) фототранзистор с кристальной линзой |
3 | L-51P3C | T-1 3/4 (5мм) фототранзистор с кристальной линзой |
Партнеры
Сайт о ценах на загородную недвижимость: недвио на Сайте портал по продаже загородной.
- Callbook
- Мультипоиск
- DX-календарь
- QSL-бюро
- QSL-менеджеры
- База частот
- Библиотека
- Дипломы
- Закон и право
- Каталог ссылок
- Каталог техники
- Круглые столы
- Магазины
- Начинающим
- Новости
- Объявления (карта)
- SDR Трансляции
- Поиск по сайту
- Помощь
- Почтовые рассылки
- Программы
- Cи-Би
- Солнечная активность
- Соревнования
- Справочники
- Статьи
- Схемы
- УКВ
- Форумы
- eHam.RU NEW!
Нашли опечатку? Ctrl+Enter
Мобильная версия
- Размещение рекламы
- Написать редакторам портала
- Контакты Карта сайта
- 2000 — 2020 QRZ.RU team
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
Что это такое и где применяется
Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.
Фото — фототранзистор
В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.
Где используется фототранзистор:
- Охранные системы (в основном, используются ИК-фототранзисторы);
- Кодеры;
- Компьютерные логические системы управления;
- Фотореле;
- Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
- Датчики уровня и системы подсчета данных.
Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:
- Могут производить больший ток, чем фотодиоды;
- Эти радиодетали сравнительно очень дешевые;
- Могут обеспечить мгновенный высокий ток на выходе;
- Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.
При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:
- Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
- Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
- Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.
Схемы подключения биполярных фототранзисторов
Схема с общим эмиттером
По этой схеме создается сигнал выхода, переходящий от высокого состояния в низкое, при падении лучей света.
Эта схема выполнена с помощью подключения сопротивления между коллектором транзистора и источником питания. Напряжение выхода снимают с коллектора.
Схема с общим коллектором
Усилитель , подключенный с общим коллектором, создает сигнал выхода, переходящий от низкого состояния в высокое, при попадании света на полупроводник.
Эта схема образуется подключением сопротивления между отрицательным выводом питания и эмиттером. С эмиттера снимается выходной сигнал.
В обоих вариантах транзистор может работать в 2-х режимах:
- Активный режим.
- Режим переключения.
Активный режим
В этом режиме фототранзистор создает сигнал выхода, зависящий от интенсивности падающего света. Когда уровень освещенности превосходит определенную границу, то транзистор насыщается, и сигнал на выходе уже не будет повышаться, даже если увеличивать интенсивность лучей света. Такой режим действия рекомендуется для устройств с функцией сравнения двух порогов потока света.
Режим переключения
Действие полупроводника в этом режиме значит, что транзистор будет реагировать на подачу света выключением или включением. Такой режим необходим для устройств, в которых необходимо получение выходного сигнала в цифровом виде. Путем изменения значения резистора в схеме усилителя, можно подобрать один из режимов функционирования.
Для эксплуатации фототранзистора в качестве переключателя чаще всего применяют сопротивление более 5 кОм. Напряжение выхода повышенного уровня в переключающем режиме будет равно питающему напряжению. Напряжение выхода малого уровня должно равняться менее 0,8 В.
Проверка фототранзистора
Такой транзистор легко проверяется мультитестером, даже без наличия базы транзистора. Если подключить мультитестер к участку эмиттер-коллектор, то его сопротивление при любой полярности будет большим, так как транзистор закрыт. Если луч света попадает на чувствительный элемент, то измерительный прибор покажет низкое значение сопротивления, так как транзистор в этом случае открылся, благодаря свету, при правильной полярности питания.
Так ведет себя обычный транзистор, но он открывается сигналом электрического тока, а не лучом света. Кроме силы света, большую роль играет спектральный состав света.