Емкостной делитель напряжения
Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.
Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.
Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:
По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.
Емкостной делитель напряжения в цепи переменного тока
В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.
Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.
Реактивный элемент
Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток отстает от напряжения на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.
Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.
Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:
Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.
Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.
Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:
Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.
Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:
Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:
Индуктивный делитель напряжения
В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.
Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.
XL = 2πfL.
Упрощенный вариант формулы:
Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.
- Делитель напряжения на резисторах
- Инвертор напряжения
- Умножитель напряжения
- Замена электролитического конденсатора
Переменный резистор в качестве делителя напряжения
Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение
Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.
Применение делителя напряжения на резисторах
В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.
Потенциометры
Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.
Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.
Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.
Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.
Резистивные датчики
Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.
Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).
Пример работы делителя напряжения на фоторезисторе.
Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.
Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Подробнее
https://youtube.com/watch?v=LnsDYvS93U0
Расчет гасящего конденсатора для светодиода
Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
Расчет емкости конденсатора для светодиода:
С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)
С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В; Iсд – номинальный ток диода (смотрим в паспортных данных); Uвх – амплитудное напряжение сети — 320В; Uвых – номинальное напряжение питания LED.
Можно встретить еще такую формулу:
C = (4,45 * I) / (U — Uд)
Она используется для маломощных нагрузок до 100 мА и до 5В.
Подключение одного светодиода
Для расчета емкости конде-ра нам понадобится:
- Максимальный ток диода – 0,15А;
- напряжение питания диода – 3,5В;
- амплитудное напряжение сети — 320В.
Для таких условий параметры конде-ра: 1,5мкФ, 400В.
Подключение нескольких светодиодов
При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.
- Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
- сила тока – Iсд * количество параллельных цепочек.
Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
Напряжение питания – 4 * 3,5В = 14В; Сила тока цепи – 0,15А * 6 = 0,9А;
Для этой схемы параметры конде-ра: 9мкФ, 400В.
Как работает делитель напряжения
Делитель напряжения это устройство, осуществляющее регулировку выходного напряжения по отношению значения входного напряжения, в соответствии с коэффициентом передачи. То есть, из большего значения получается меньшее, а само напряжение бывает постоянным или переменным. Самая простая схема делителя напряжения состоит как минимум из двух сопротивлений. Если их сопротивления равны между собой, то и падения напряжения будут одинаковыми. Поэтому, по закону Ома напряжение на выходе прибора будет ровно в два раза ниже, чем на входе. В других случаях для расчетов падения напряжений используются формулы.
Основной функцией делителя напряжения в электрических цепях является снижение напряжения и получение нескольких его значений с фиксированными показателями на различных участках. Его основой служат резисторы или реактивные сопротивления в количестве два и более элементов.
Простейший делитель представляется в виде двух участков цепи, называемых плечами. Верхним плечом считается участок между нулевой точкой и положительным напряжением, а нижним – участок между нулевой точкой и минусом. После того как определены исходные данные, можно сделать самый простой расчет делителя напряжения.
В качестве примера рассматриваются два резистора, соединенные последовательно. К ним подается напряжение U, которое может быть переменными или постоянным. После этого в действие вступает закон Ома, когда при последовательном соединении резисторов, общее сопротивление составит сумму их номиналов. В виде формы это будет выглядеть следующим образом: I = U/Rобщ, в которой Rобщ = R1+R2. Следовательно, I = U/(R1+R2).
Сила тока при последовательно соединенных резисторов, будет одинаковой на всех участках цепи. Если у каждого резистора имеется собственное значение сопротивления, то по закону Ома у них образуются совершенно разные напряжения. Сопротивлению R1 соответствует напряжение U1, а сопротивлению R2 – напряжение U2. В результате получается следующая ситуация, выраженная формулой I = U2/R2 = U1/R1 = U/(R1+R2).
Для того, чтобы найти значения напряжений U1 и U2, необходимо выполнить такие действия: U1 = U x R1/(R1+R2) и U2 = U x R2/(R1+R2). Если правые части каждого уравнения сложить друг с другом, то в результате получится значение входящего напряжения U, состоящее из суммы напряжений U1 и U2, то есть U = U1 + U2. Это значит, что сумма падений напряжений на всех последовательно соединенных резисторах, будет равна напряжению источника питания, то есть входящему напряжению. Таким образом, данное выражение есть ни что иное, как формула делителя напряжения. Практически получается, что входящее напряжение U оказалось разделенным на два напряжения с собственными значениями – U1 и U2.
Во многих случаях необходимо, чтобы процесс разделения напряжения осуществлялся плавно. С этой целью был изобретен прибор – переменный резистор. Работа устройства происходит по установленной схеме. Два крайних контакта обладают постоянным сопротивлением, а сопротивление среднего контакта относительно крайних контактов будет изменяться в зависимости от направления вращения регулятора. С помощью переменных резисторов добавляется громкость в звуковых колонках, у радиоприемников и телевизоров старых марок.
Пример — делитель для осциллографа
Если мы хотим получить осциллограмму высокого напряжения, то сразу приходит в голову делитель напряжения. Изготавливаем делитель, подключаем его вход к источнику высоковольтного сигнала, а выход к входу осциллографа. Должны получить на входе осциллографа уменьшенную копию входного сигнала.
Если наш сигнал имеет достаточно большую частоту или просто резкие фронты (например, меандр), то ничего не получится. Осциллограмма не будет похожа на изначальный сигнал. Причина в том, что осциллограф имеет некоторую входную емкость, которая образует с эквивалентным выходным сопротивлением делителя фильтр нижних частот. Все высшие гармоники сигнала подавляются. Кроме того этот фильтр формирует фазовый сдвиг. Это бывает существенным для многолучевых осциллографов, когда мы анализируем соотношения сигналов. Чтобы этого избежать, резистор R1 нужно зашунтировать конденсатором.
Емкость шунтирующего конденсатора определяется исходя из того соображения, что отношение модуля сопротивления переменному току шунтирующего конденсатора к модулю сопротивления переменному току входной емкости осциллографа должно быть равно отношению сопротивлений резисторов R1 и R2. А модуль сопротивления переменному току обратно пропорционален емкости конденсатора.
[Емкость шунтирующего конденсатора, пФ] = [Входная емкость осциллографа, пФ] * [Сопротивление резистора R2, Ом] / [Сопротивление резистора R1, Ом]
(читать дальше…) :: (в начало статьи)
1 | 2 |
:: ПоискТехника безопасности :: Помощь
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.
Еще статьи
Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….
Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…
Качественный усилитель мощности звуковой, низкой частоты, звука, нч. В…
Качество усилителей звуковой частоты. Обзор, схемы….
Как не спутать плюс и минус? Защита от переполярности. Описание…
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст…
Применение тиристоров (динисторов, тринисторов, симисторов). Схемы. Ис…
Тиристоры в электронных схемах. Тонкости и особенности использования. Виды тирис…
Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…
Соединение светодиодов. Последовательное, параллельное включение оптоэ…
Как правильно включить светодиод, соединять их и входные цепи приборов на их осн…
Параллельное, последовательное соединение резисторов. Расчет сопротивл…
Вычисление сопротивления и мощности при параллельном и последовательном соединен…
Как понизить напряжение с помощью резистора
Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:
В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:
Uвых= (Uвх*R2)/(R1+R2), где
Uвх – напряжение на входе, В;
Uвых – напряжение на выходе, В
R1 – показатель сопр. 1-ого резистора (Ом)
R2 – показатель сопр. 2-ого элемента, (Ом)
Подбор резистора для понижения напряжения
Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.
Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:
- EasyEDA;
- Circuit Sims;
- DcAcLab;
и другие.
В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.
Примеры небольших потенциометров
Ниже показано несколько небольших потенциометров, которые обычно используются в бытовом электронном оборудовании, а также любителями и студентами при построении схем:
Рисунок 17 – Примеры небольших потенциометров
Меньшие устройства слева и справа предназначены для подключения к беспаечной макетной плате или для пайки в печатную плату. Устройства посередине предназначены для установки на плоской панели с проводами, припаянными к каждому из трех выводов.
Ниже показано еще три потенциометра, более специализированных, чем только что показанный набор:
Рисунок 18 – Примеры потенциометров размером побольше
Большое устройство «Helipot» – это лабораторный потенциометр, предназначенный для быстрого и легкого подключения к цепи. Устройство в нижнем левом углу фотографии представляет собой потенциометр того же типа, только без корпуса и поворотного счетного диска. Оба этих потенциометра представляют собой прецизионные устройства, в которых используются многооборотные спиралевидные резистивные ленты и ползунковые механизмы для точной регулировки. Устройство в правом нижнем углу представляет собой потенциометр для монтажа на панели, предназначенный для работы в тяжелых промышленных условиях.
Калькулятор делителя напряжения
Разделитель напряжения представляет собой схему, используемую для создания напряжения, которое меньше или равно входному напряжению.
Выходное напряжение (V out )
Вольт (V)
Как найти выходное напряжение цепи делителя
Два делителя напряжения резистора являются одной из наиболее распространенных и полезных схем, используемых инженерами. Основная цель этой схемы заключается в уменьшении входного напряжения до более низкого значения в зависимости от отношения двух резисторов. Этот калькулятор помогает определить выходное напряжение схемы делителя с учетом входного (или источника) напряжения и значений резисторов
Обратите внимание на то, что выходное напряжение в реальных схемах может быть различным, поскольку резистор и сопротивление нагрузки (при подключении выходного напряжения) становятся факторами
Уравнение
$$ V_ {out} = V_ {in} * \ frac {R_ {2}} {R_ {1} + R_ {2}} $$
Где:
$$ V_ {out} $$ = Выходное напряжение. Это уменьшенное напряжение.
$$ V_ {in} $$ = Входное напряжение.
$$ R_ {1} $$ и $$ R_ {2} $$ = значения резистора. Отношение $$ \ frac {R_ {2}} {R_ {1} + R_ {2}} $$ определяет масштабный коэффициент.
Приложения
Поскольку делители напряжения довольно распространены, их можно найти в ряде приложений. Ниже приведены лишь некоторые из мест, где эта схема найдена.
потенциометры
Возможно, наиболее распространенной схемой делителя напряжения является то, что используется потенциометр, который является переменным резистором. Схематическое изображение потенциометра показано ниже:
«Горшок» обычно имеет три внешних контакта: два являются концами резистора, а один подключен к рычагу стеклоочистителя. Стеклоочиститель разрезает резистор пополам и перемещает его, регулируя соотношение между верхней половиной и нижней половиной резистора. Соедините два внешних выводы к напряжению (вход) и ссылку (земля) со средним (стеклоочистители штифтом) в качестве выходного контакта и вы сам делитель напряжения.
Уровневые сдвиги
Другая область, в которой используются делители напряжения, — это когда напряжение должно быть выровнено. Наиболее распространенным сценарием является взаимодействие сигналов между датчиком и микроконтроллером с двумя разными уровнями напряжения. Большинство микроконтроллеров работают при напряжении 5 В, в то время как некоторые датчики могут принимать только максимальное напряжение 3, 3 В. Естественно, вы хотите выровнять напряжение от микроконтроллера, чтобы избежать повреждения датчика. Пример схемы показан ниже:
Схема выше показывает схему делителя напряжения, включающую резистор 2 кОм и 1 кОм. Если напряжение от микроконтроллера составляет 5 В, то пониженное напряжение на датчик рассчитывается как:
$$ V_ {out} = 5 * \ frac {2k \ Omega} {2k \ Omega + 1k \ Omega} = 3.33 V $$
Этот уровень напряжения теперь безопасен для работы датчика
Обратите внимание, что эта схема работает только для выравнивания напряжений и не выравнивания
Ниже приведены некоторые другие комбинации резисторов, используемые для выравнивания часто встречающихся напряжений:
Комбинация резисторов | использование |
4, 7 кОм и 6, 8 кОм | От 12 В до 5 В |
4, 7 кОм и 3, 9 кОм | 9V до 5V |
3, 6 кОм и 9, 1 кОм | От 12 В до 3, 3 В |
3, 3 кОм и 5, 7 кОм | От 9 В до 3, 3 В |
Чтение резистивного датчика
Многие датчики являются резистивными устройствами и большинством микроконтроллеров считывают напряжение, а не сопротивление. Таким образом, резистивный датчик обычно подключается в цепи делителя напряжения с резистором для взаимодействия с микроконтроллером. Пример установки показан ниже:
Термистор — это датчик, сопротивление которого изменяется пропорционально температуре. Скажем, что термистор имеет сопротивление комнатной температуре 350 Ом. Сопряженное сопротивление выбирается равным 350 Ом.
Когда термистор находится при комнатной температуре, выходное напряжение:
$$ V_ {out} = 5 * \ frac {350 \ Omega} {350 \ Omega + 350 \ Omega} = 2.5V $$
Когда температура увеличивается, сопротивление термистора изменяется до 350, 03 Ом, выход изменяется на:
$$ V_ {out} = 5 * \ frac {350.03 \ Omega} {350 \ Omega + 350.03 \ Omega} = 2.636V $$
Такое небольшое изменение напряжения обнаруживается микроконтроллером. Если функция передачи термистора известна, теперь можно рассчитать эквивалентную температуру.
Дальнейшее чтение
Техническая статья — Разделители напряжения и тока: что это такое и что они делают
Учебник — Глава 6 — Цепи Divider и законы Кирхгофа
Учебник — Потенциометр в качестве делителя напряжения
Рабочий лист — Цепь делителя напряжения
Как проверить светодиод мультиметром (тестером) на работоспособность?
Проверка светодиода мультиметром является наиболее простым и правильным способом определения его работоспособности. Цифровой мультиметр (тестер) – это многофункциональный измерительный прибор, возможности которого отражены в позициях переключателя на передней панели. На работоспособность светодиоды проверяются при помощи функций, присутствующих в любом тестере. Методы проверки рассмотрим на примере цифрового мультиметра DT9208A. Но сначала немного затронем тему причин неисправности новых и выхода из строя старых светоизлучающих диодов.
Основные причины неисправности и выхода из строя светодиодов
Особенность любого излучающего диода – низкий предел обратного напряжения, который лишь на несколько вольт превышает падение на нём в открытом состоянии. Любой электростатический разряд или неверное подключение в ходе наладки схемы может стать причиной выхода LED (аббревиатура от англ.
Light-emitting diode) из строя. Сверхъяркие малоточные светодиоды, применяемые в роли индикаторов питания различных устройств, часто перегорают в результате скачков напряжения. Их планарные аналоги (SMD LED) широко используются в лампах на 12 В и 220 В, лентах и фонариках.
В их исправности также можно убедиться с помощью тестера.
Стоит отметить, что небольшая доля бракованных (около 2%) светодиодов поставляется от производителя. Поэтому дополнительная проверка светодиода тестером перед монтажом на печатную плату не помешает.
Методы диагностики
Простейшим способом, которым чаще всего пользуют радиолюбители, является проверка светоизлучающих диодов мультиметром на работоспособность при помощи щупов. Способ удобен для всех типов светоизлучающих диодов, независимо от их исполнения и количества выводов. Установив переключатель в положение «прозвонка, проверка на обрыв», щупами касаются выводов и наблюдают за показаниями. Замыкая красный щуп на анод, а черный на катод исправный светодиод должен засветиться. При смене полярности щупов на экране тестера должна оставаться цифра 1.
Свечение излучающего диода во время проверки будет небольшой и на некоторых светодиодах при ярком освещении может быть незаметно.
Для точной проверки многоцветных LED с несколькими выводами необходимо знать их распиновку. В противном случае придется наугад перебирать выводы в поисках общего анода или катода. Не стоит бояться тестировать мощные светодиоды с металлической подложкой. Мультиметр не способен вывести их из строя, путём замера в режиме прозвонки.
Проверку светодиода мультиметром можно выполнить без щупов, используя гнёзда для тестирования транзисторов. Как правило, это восемь отверстий, расположенных в нижней части прибора: четыре слева для PNP транзисторов и четыре справа для NPN транзисторов. PNP транзистор открывается подачей положительного потенциала на эмиттер «Е». Поэтому анод нужно вставить в гнездо с надписью «Е», а катод – в гнездо с надписью «С». Исправный светодиод должен засветиться.
Для тестирования в отверстиях под NPN транзисторы нужно сменить полярность: анод — «С», катод – «Е». Таким методом удобно проверять светодиоды с длинными и чистыми от припоя контактами
При этом неважно, в каком положении находится переключатель тестера. Проверка инфракрасного светодиода происходит также, но имеет свои нюансы из-за невидимого излучения. В момент касания щупами выводов рабочего ИК светодиода (анод – плюс, катод – минус) на экране прибора должно высветиться число около 1000 единиц
В момент касания щупами выводов рабочего ИК светодиода (анод – плюс, катод – минус) на экране прибора должно высветиться число около 1000 единиц.
При смене полярности на экране должна быть единица.
Для проверки ИК диода в гнёздах тестирования транзисторов дополнительно придётся задействовать цифровую камеру (смартфон, телефон и пр.) Инфракрасный диод вставляют в соответствующие отверстия мультиметра и сверху на него направляют камеру. Если он в исправном состоянии, то ИК излучение будет отображаться на экране гаджета в виде светящегося размытого пятна.
Проверка мощных SMD светодиодов и светодиодных матриц на работоспособность кроме мультиметра требует наличия токового драйвера. Мультиметр включают последовательно в электрическую цепь на несколько минут и следят за изменением тока в нагрузке. Если светодиод низкого качества (или частично неисправный), то ток будет плавно нарастать, увеличивая температуру кристалла. Затем тестер подключают параллельно нагрузке и замеряют прямое падение напряжения. Сопоставив измеренные и паспортные данные из вольт-амперной характеристики можно сделать вывод о пригодности LED к эксплуатации.
Расчет конденсатора для светодиодов
Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.
Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.
Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.
Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.
Описание
Принцип действия трансформаторов основан на методе емкостного деления высокого напряжения с последующим преобразованием посредством электромагнитной индукции переменного тока.
Трансформаторы состоят из емкостного делителя напряжения и электромагнитного устройства (ЭМУ). Емкостной делитель состоит из набора конденсаторов с бумажнопропиленовой изоляцией обкладок, помещенных в залитый маслом фарфоровый изолятор, и смонтирован в виде колонны. ЭМУ подключается к выходу делителя и состоит из последовательно включенных компенсирующего реактора с малыми потерями и электромагнитного трансформатора. Электромагнитный трансформатор имеет секционированную первичную обмотку для подгонки коэффициента трансформации, одну или две основные вторичные обмотки и одну дополнительную. ЭМУ заключено в герметичный бак, заполненный маслом. Корпус электромагнитного устройства служит основанием для монтажа колонны емкостного делителя. Высоковольтный ввод расположен на верхнем фланце делителя.
Замок крышки контактной коробки пломбируется для предотвращения несанкционированного доступа. На крышку контактной коробки наносится знак поверки.
Общий вид трансформатора приведен на рисунке 1.
Таблица 1 — Метрологические характеристики
Параметр |
Значения |
Значение номинального напряжения первичной обмотки, кВ |
110/V3 |
Наибольшее значение рабочего напряжения первичной обмотки, кВ |
126 |
Электрическая прочность изоляции трансформатора: — при приложении напряжения промышленной частоты, кВ — при приложении напряжения полного грозового импульса, кВ |
200 480 |
Значения номинальных напряжений вторичной обмотки, В — основной — дополнительной — защитной |
100/V3 100/V3 100 |
Класс точности вторичных обмоток — основной — дополнительной — защитной |
0,2 0,2; 0,5; 1,0; 3,0 3Р |
Значения номинальных мощностей вторичных обмоток, В-А — основной — дополнительной — защитной |
100 100; 200; 400; 800 200 |
Значение номинальной частоты переменного тока, Гц |
50 |
Предельное значение мощности трансформатора, В-А |
1000 |
Таблица 2 — Основные технические характеристики
Наименование характеристики |
Значения |
Габаритные размеры трансформатора, мм, не более |
|
— высота |
2065 |
— ширина |
450 |
— длина |
450 |
Масса, кг, не более |
490 |
Условия эксплуатации: |
|
»-» о/’ч — температура окружающей среды, С |
от -60 до +50 |
Средний срок службы, лет |
30 |
Средняя наработка на отказ не менее, ч, не менее |
220000 |