Электромагнитная индукция — electromagnetic induction

Содержание

Презентация на тему: » « Электромагнитная индукция ».. Содержание : 1.История открытия явления электромагнитной индукции 2.Опыты Фарадея 3.Понятие явления электромагнитной индукции.» — Транскрипт:

1

« Электромагнитная индукция ».

2

Содержание : 1. История открытия явления электромагнитной индукции 2. Опыты Фарадея 3. Понятие явления электромагнитной индукции 4. Закон электромагнитной индукции 5. Правило Ленца 6. Определение направления индукционного тока 7.Применение.

3

История открытия электромагнитной индукции. Открытия Ганса Кристиана Эрстеда и Андре Мари Ампера показали, что электричество обладает магнитной силой. Влияние магнитных явлений на электрические было открыто Майклом Фарадеем. Ганс Кристиан Эрстед Андре Мари Ампер

4

Майкл Фараде́й ( ) «Превратить магнетизм в электричество»- записал он в своём дневнике в 1822 году. Английский физик, основоположник учения об электромагнитном поле, иностранный почетный член Петербургской Академии Наук (1830).

5

29 августа 1831 года Майклом Фарадеем было открыто явление электромагнитной индукции — явление, которое легло в основу электротехники.

6

Описание опытов Майкла Фарадея На деревянный брусок намотаны две медные проволоки. Одна из проволок была соединена с гальванометром, другая – с сильной батареей. При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра

7

Описание опытов Майкла Фарадея Другой опыт заключался в регистрации всплесков тока на концах катушки, внутрь которой вставлялся постоянный магнит. Такие всплески Фарадей назвал «волнами электричества»

8

Описание опытов Майкла Фарадея Таким образом, Фарадей обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает так называемый индукционный ток. (Индукция, в данном случае, — появление, возникновение).

9

Электромагнитная индукция – физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром.

10

ЭДС индукции ЭДС индукции, вызывающая всплески тока («волны электричества») зависит не от величины магнитного потока, а от скорости его изменения.

11

ЭДС индукции Электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

12

ЭДС индукции Величина электродвижущей силы не зависит от того, что является причиной изменения потока изменение самого магнитного поля или движение контура (или его части) в магнитном поле.

13

ЭДС индукции Электрический ток, вызванный этой ЭДС, называется индукционным током.

14

Закон электромагнитной индукции Согласно закону электромагнитной индукции Фарадея Е = — dФ/dt Е — ЭДС, действующая вдоль произвольно выбранного контура, В Ф – магнитный поток через поверхность, натянутую на этот контур, Вб

15

Закон электромагнитной индукции ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

16

Закон электромагнитной индукции Е = — dФ/dt Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленцаправило ЛенцаЭ. Х. Ленца

17

Правило Ленца Индукционный ток всегда имеет такое направление, при котором возникает противодействие причинам, его породившим. Эмилий Христианович Ленц 1804 – 1865 г.г., академик, ректор Петербургского Университета

18

1. Определить направление линий индукции внешнего поля В (выходят из N и входят в S). 2.Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то Ф>0, если выдвигается, то Ф

19

3. Определить направление линий индукции магнитного поля В, созданного индукционным током (если Ф>0, то линии В и В направлены в противоположные стороны; если Ф

20

Практическое применение закона электромагнитной индукции 1. Производство электрической энергии; 2.Радиотехника; 3. Преобразование Электрического тока.

21

Вопросы Сформулируйте закон электромагнитной индукции. Кто является основоположником этого закона? Что такое индукционный ток и как определить его направление? От чего зависит величина ЭДС индукции? Принцип действия каких электрических аппаратов основан на законе электромагнитной индукции?

22

Используемые ресурсы

23

Спасибо за внимание!

Описание

Магнитный поток через поверхность — когда магнитное поле переменное — основывается на разделении поверхности на небольшие элементы поверхности, над которыми магнитное поле можно считать локально постоянным. В этом случае полный поток представляет собой формальное суммирование этих элементов поверхности (см. Интегрирование поверхностей ).

Каждая точка на поверхности связана с направлением, называемым нормалью к поверхности ; магнитный поток, проходящий через точку, является тогда составляющей магнитного поля вдоль этого направления.

Магнитное взаимодействие описывается в терминах векторного поля , где каждая точка в пространстве связана с вектором, который определяет, какую силу движущийся заряд будет испытывать в этой точке (см. Силу Лоренца ). Поскольку векторное поле поначалу довольно сложно визуализировать, в элементарной физике можно вместо этого визуализировать это поле с помощью линий поля . Магнитный поток через некоторую поверхность на этом упрощенном изображении пропорционален количеству силовых линий, проходящих через эту поверхность (в некоторых контекстах, магнитный поток может быть определен как точное количество силовых линий, проходящих через эту поверхность; хотя технически это вводит в заблуждение

, это различие не важно). Магнитный поток — это чистое количество силовых линий, проходящих через эту поверхность; то есть число, проходящее в одном направлении, минус число, проходящее в другом направлении (см

ниже, чтобы решить, в каком направлении силовые линии имеют положительный знак, а в каком — отрицательный). В более продвинутой физике аналогия с силовыми линиями опускается, и магнитный поток правильно определяется как поверхностный интеграл нормальной составляющей магнитного поля, проходящего через поверхность. Если магнитное поле постоянное, магнитный поток, проходящий через поверхность с векторной площадью S, равен

ΦBзнак равноB⋅Sзнак равноBSпотому что⁡θ,{\ Displaystyle \ Phi _ {B} = \ mathbf {B} \ cdot \ mathbf {S} = BS \ cos \ theta,}

где B — величина магнитного поля (плотность магнитного потока), имеющая единицу Wb / m 2 ( тесла ), S — площадь поверхности, а θ — угол между силовыми линиями магнитного поля и нормалью (перпендикулярно ) к S . Для переменного магнитного поля мы сначала рассмотрим магнитный поток через элемент бесконечно малой площади d S , где мы можем считать поле постоянным:

dΦBзнак равноB⋅dS.{\ displaystyle d \ Phi _ {B} = \ mathbf {B} \ cdot d \ mathbf {S}.}

Затем обычную поверхность S можно разбить на бесконечно малые элементы, и тогда полный магнитный поток, проходящий через поверхность, является поверхностным интегралом.

ΦBзнак равно∬SB⋅dS.{\ displaystyle \ Phi _ {B} = \ iint _ {S} \ mathbf {B} \ cdot d \ mathbf {S}.}

Из определения магнитного векторного потенциала A и основной теоремы о роторе магнитный поток можно также определить как:

ΦBзнак равно∮∂SА⋅dℓ,{\ Displaystyle \ Phi _ {B} = \ oint _ {\ partial S} \ mathbf {A} \ cdot d {\ boldsymbol {\ ell}},}

где криволинейный интеграл берется по границе поверхности S , обозначаемое ∂ S .

Электромагнитная индукция

При изменении магнитного потока в проводе наводится электрический ток. Этот факт не зависит от того, какими причинами было вызвано это изменение: перемещением постоянного магнита, движением провода или изменением силы тока в рядом расположенном проводнике.

Частота вращения: формула

Это явление было открыто Майклом Фарадеем 29 августа 1831 года. Его эксперименты показали, что ЭДС (электродвижущая сила), появляющаяся в контуре, ограниченном проводниками, прямопропорциональна скорости изменения потока, проходящего через площадь этого контура.

Важно! Для возникновения ЭДС провод должен пересекать силовые линии. При движении вдоль линий ЭДС отсутствует

Если катушка, в которой возникает ЭДС, включена в электрическую цепь, то в обмотке возникает ток, создающий в катушке индуктивности своё электромагнитное поле.

Конвертер величин

Калькуляторы

В этой части Конвертера физических единиц TranslatorsCafe.com представлена группа калькуляторов, выполняющих расчеты в различных областях электротехники, радиотехники и электроники.

Магнитостатика, магнетизм и электродинамика

Магнитостатика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае.

Электродинамика

— раздел физики, изучающий силы, возникающие при взаимодействии электрически заряженных частиц и тел. Эти силы объясняются в электродинамике с помощью электромагнитных полей. Силы электромагнитного взаимодействия лежат в основе большинства явлений, с которыми мы встречаемся в повседневной жизни. Часть привычных явлений обусловлена действием гравитационных сил.

Электромагнитное поле

— физическое поле, появляющееся при взаимодействии движущихся заряженных телами или частиц. Электромагнитное поле можно рассматривать как сочетание электрического и магнитного полей.

Электрическое поле

— физическое поле, окружающее электрически заряженные частицы, проводники с проходящими в них электрическими токами и изменяющиеся во времени и пространстве магнитные поля.

Магнитное поле

— физическое силовое поле, окружающее заряженные частицы, проводники с электрическим током, магнитные материалы и переменные электрические поля, а также действующее на проводники с электрическим током, движущиеся электрические заряды и тела, обладающие магнитным моментом. Магнитное поле в любой точке определяется направлением и силой и таким образом является векторным полем. Магнитное поле характеризуется двумя основными величинам — вектором магнитной индукцииВ и вектором напряженности магнитного поляH .

Конвертер магнитного потока

Магнитный поток

определяется как интеграл вектора магнитной индукции через конечную поверхность. Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади. Для измерения магнитного потока используют флюксметр, который измеряет напряжение на измерительной катушке.

В СИ единицей магнитного потока является вебер

(Вб, размерность — В·с = кг·м²·с⁻²·А⁻¹). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м². В системе СГС — магнитный поток измеряется вмаксвеллах (Мкс).

Использование конвертера «Конвертер магнитного потока»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Изучайте технический английский язык и технический русский язык с нашими видео! — Learn technical English and technical Russian with our videos!

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие. Примечание.

В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись

, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение отexponent ) — означает «· 10^», то есть«…умножить на десять в степени…» . Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Самоиндукция

В этом случае рассматривается ситуация, когда изменение движения электронов порождает ЭДС, вызывающий индукционный ток в этом же проводнике.

Взяв за основу правило Ленца, можно утверждать, что он имеет направление, противоположное первоначальному изменению.

Самоиндукция похожа на явление инерции. Тяжёлое тело невозможно остановить мгновенно. Также нельзя изменить силу тока за один миг до нужной величины из-за наличия явления самоиндукции.

Это свойство можно продемонстрировать следующим опытом. Нужно сделать две электрических цепи. В одной из них имеется источник и лампочка. Другая сделана аналогичным образом, но различие состоит в том, что в цепь добавлена катушка.

Причины возникновения индукционного тока в движущихся и неподвижных проводниках

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δинд можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B→ направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1.20.3. Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ→. Модуль этой сторонней силы равен:

FЛ=eυ→B.

Работа силы FЛ на пути l равна:

A=FЛ·l=eυBl.

По определению ЭДС: 

δинд=Ae=υBl.

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δинд можно записать другой вариант формулы. Площадь контура с течением времени изменяется на ΔS=lυΔt. Соответственно, магнитный поток тоже будет с течением времени изменяться: ΔΦ=BlυΔt.

Следовательно, 

δинд=∆Φ∆t.

Знаки в формуле, которая связывает δинд и ∆Φ∆t, можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n→ и положительного направления обхода контура l→ можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R, то по ней будет протекать индукционный ток, который равен Iинд=δиндR. За время Δt на сопротивлении R выделится джоулево тепло:

∆Q=RIинд2∆t=υ2B2l2R∆t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера FА→.

Для рассмотренного выше примера модуль силы Ампера равен FA =IBl. Направление силы Ампера таково, что она совершает отрицательную механическую работу Aмех. Вычислить эту механическую работу за определенный период времени можно по формуле:

Aмех=-Fυ∆t=-IBlυ∆t=-υ2B2l2R∆t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δинд в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δинд нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δинд обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1.20.4. Модель электромагнитной индукции

Рисунок 1.20.5. Модель опытов Фарадея

Рисунок 1.20.6. Модель генератора переменного тока

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Реальные проекты в наши дни

За все последние годы, согласно вышеприведенным технологиям, ученые пытались и пытаются реализовать всего два проекта.

Первый из них начинался очень обнадеживающе. В 2000-х годах на о.Реюньон, возникла потребность в постоянной передаче 10кВт мощности на расстояние в 1 км.

Горный рельеф и местная растительность, не позволяли проложить там ни воздушные линии электропередач, ни кабельные.

Все перемещения на острове в эту точку осуществлялось исключительно на вертолетах.

Для решения проблемы в одну команду были собраны лучшие умы из разных стран. В том числе и ранее упоминавшиеся в статье, наши ученые из МГУ В.Ванке и В.Савин.

Однако в момент, когда должны были приступать к практической реализации и строительству передатчиков и приемников энергии, проект заморозили и остановили. А с началом кризиса в 2008 году и вовсе забросили.

На самом деле это очень обидно, так как теоретическая работа там была проделана колоссальная и достойная реализации.

Второй проект, выглядит более безумным чем первый. Однако на него выделяются реальные средства. Сама идея была высказана еще в 1968г физиком из США П.Глэйзером.

Он предложил на тот момент не совсем нормальную идею – вывести на геостационарную орбиту в 36000 км над землей огромный спутник. На нем расположить солнечные панели, которые будут собирать бесплатную энергию солнца.

Затем все это должно преобразовываться в пучок СВЧ волн и передаваться на землю.

Этакая “звезда смерти” в наших земных реалиях.

На земле пучок нужно поймать гигантскими антеннами и преобразовать в электричество.

Насколько огромны должны быть эти антенны? Представьте, что если спутник будет в диаметре 1км, то на земле приемник должен быть в 5 раз больше – 5км (размер Садового кольца).

Но размеры это всего лишь малая часть проблем. После всех расчетов оказалось, что такой спутник вырабатывал бы электричество мощностью в 5ГВт. При достижении земли оставалось бы всего 2ГВт. К примеру Красноярская ГЭС дает 6ГВт.

Поэтому его идею рассмотрели, посчитали и отложили в сторонку, так как все изначально упиралось в цену. Стоимость космического проекта в те времена вылезла за 1трлн.$.

Но наука к счастью не стоит на месте. Технологии совершенствуются и дешевеют. Сейчас разработку такой солнечной космической станции уже ведут несколько стран. Хотя в начале двадцатого века для беспроводной передачи электроэнергии хватало всего одного гениального человека.

Общая цена проекта упала от изначальной до 25млрд.$. Остается вопрос – увидим ли мы в ближайшее время его реализацию?

К сожалению никто вам четкого ответа не даст. Ставки делают только на вторую половину нынешнего столетия. Поэтому пока давайте довольствоваться беспроводными зарядками для смартфонов и надеяться что ученым удастся повысить их КПД. Ну или в конце концов на Земле родится второй Никола Тесла.

  • https://ectrl.ru/osveshchenie/peredacha-elektroenergii.html
  • https://amperof.ru/teoriya/besprovodnaya-peredacha-elektroenergii.html
  • https://samelectrik.ru/kak-proisxodit-peredacha-i-raspredelenie-elektroenergii.html
  • https://amperof.ru/elektroenergia/peredacha-elektroenergii-na-rasstoyanie.html
  • https://oxotnadzor.ru/kak-osushchestvlyayetsya-peredacha-elektroenergii-postoyannym-tokom/
  • https://domikelectrica.ru/3-sposoba-peredachi-energii-bez-provodov/

Самоиндукция. Индуктивность. Энергия магнитного поля тока

Подробности
Просмотров: 527

«Физика – 11 класс»

Самоиндукция.

Если по катушке идет переменный ток, то:
магнитный поток, пронизывающий катушку, меняется во времени,
а в катушке возникает ЭДС индукции .
Это явление называют самоиндукцией.

По правилу Ленца при увеличении тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока.
При уменьшения тока напряженность вихревого электрического поля и ток направлены одинаково, т.е.вихревое поле поддерживает ток.

На вышеприведенном рисунке
при замыкании ключа первая лампа вспыхивает практически сразу, а вторая — с заметным запозданием, т.к. ЭДС самоиндукции в цепи второй лампы велика, и сила тока не сразу достигает своего максимального значения.

При размыкании ключа в катушке L возникает ЭДС самоиндукции, которая поддерживает уменьшающийся ток.
В момент размыкания через гальванометр идет ток размыкания, направленный против начального тока до размыкания.
Сила тока при размыкании может быть больше начального тока, т.е. ЭДС самоиндукции больше ЭДС источника тока.

Индуктивность

Величина индукции магнитного поля, создаваемого током, пропорционален силе тока, а магнитный поток пропорционален магнитной индукции.

Следовательно

Ф = LI

где L — индуктивность контура (иначе коэффициентом самоиндукции), т.е. это коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Используя закон электромагнитной индукции, получаем равенство

Индуктивность — это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от размеров проводника, его формы и магнитных свойств среды, в которой находится проводник, но не зависит от силы тока в проводнике.

Индуктивность катушки (соленоида) зависит от количества витков в ней.

Единицу индуктивности в СИ называется генри (1Гн).
Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В.

Аналогия между самоиндукцией и инерцией.

Явление самоиндукции подобно явлению инерции в механике.

В механике:
Инерция приводит к тому, что под действием силы тело приобретает определенную скорость постепенно.
Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила.

В электродинамике:
При замыкании цепи за счет самоиндукции сила тока нарастает постепенно.
При размыкании цепи самоиндукция поддерживает ток некоторое время, несмотря на сопротивление цепи.

Явление самоиндукции выполняет очень важную роль в электротехнике и радиотехнике.

Энергия магнитного поля тока

По закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (например, гальванический элемент) на создание тока.
При размыкании цепи эта энергия переходит в другие виды энергии.

При замыкании цепи ток нарастает.
В проводнике появляется вихревое электрическое поле, действующее против электрического поля, созданного источником тока.
Чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля.
Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает.
Вихревое поле совершает положительную работу.
Запасенная током энергия выделяется.
Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Магнитное поле, созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: wм ~ В2,
аналогично тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля wэ ~ Е2.

Следующая страница «Электромагнитное поле. Электродинамический микрофон»

Назад в раздел «Физика – 11 класс, учебник Мякишев, Буховцев, Чаругин»

Электромагнитная индукция. Физика, учебник для 11 класса – Класс!ная физика

Электромагнитная индукция. Магнитный поток —
Направление индукционного тока. Правило Ленца —
Закон электромагнитной индукции —
ЭДС индукции в движущихся проводниках. Электродинамический микрофон —
Вихревое электрическое поле —
Самоиндукция. Индуктивность. Энергия магнитного поля тока —
Электромагнитное поле —
Примеры решения задач —
Краткие итоги главы

Джеймс Клерк Максвелл математически описал основные законы электричества и магнетизма

Джеймс Клерк Максвелл

Математическая формулировка электромагнитной индукции была разработана немецким физиком и математиком Францем Эрнстом Нейманом (1798-1895) в 1945 году. Эти открытия проложили путь к фундаментальной теоретической композиции, выполненной Джеймсом Клерком Максвеллом (1831-1879), начиная с “силовых линий Фарадея”. Однако работа Максвелла изначально вызывала недоверие у большинства физиков и игнорировалась инженерами.

Только к концу XIX века, после памятного эксперимента с электромагнитными волнами, проведенного Генрихом Герцем в 1887 году, теория Максвелла стала общепринятой и позволила обратиться как к физике, так и к технике.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В катушку, соединённую с гальванометром, вносят магнит. Направление индукционного тока зависит

А. От скорости перемещения магнита. Б. От того, каким полюсом вносят магнит в катушку.

Правильный ответ

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

2. В катушку, соединённую с гальванометром, вносят магнит. Сила индукционного тока зависит

А. от скорости перемещения магнита Б. от того, каким полюсом вносят магнит в катушку

1) только А 2) только Б 3) и А, и Б 4) ни А, ни Б

3. Постоянный магнит вносят в катушку, замкнутую на гальванометр (см. рисунок).

Если выносить магнит из катушки с большей скоростью, то показания гальванометра будут примерно соответствовать рисунку

4. Две одинаковые катушки замкнуты на гальванометры. В катушку А вносят полосовой магнит, а из катушки Б вынимают такой же полосовой магнит. В какой катушке гальванометр зафиксирует индукционный ток?

1) только в катушке А 2) только в катушке Б 3) в обеих катушках 4) ни в одной из катушек

5. В первом случае магнит вносят в сплошное эбонитовое кольцо, а во втором случае выносят из сплошного медного кольца (см. рисунок).

Индукционный ток

1) возникает только в эбонитовом кольце 2) возникает только в медном кольце 3) возникает в обоих кольцах 4) не возникает ни в одном из колец

6. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику постоянного тока. В каком из перечисленных опытов гальванометр зафиксирует индукционный ток?

А. В малой катушке выключают электрический ток. Б. Малую катушку вынимают из большой.

1) только в опыте А 2) только в опыте Б 3) в обоих опытах 4) ни в одном из опытов

7. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вынимают из большой катушки. Третью секунду малая катушка находится вне большой катушки. В течение четвертой секунды малую катушку вдвигают в большую. В какой(-ие) промежуток(-ки) времени гальванометр зафиксирует появление индукционного тока?

1) только 0-1 с 2) 1 с-2 с и 3 с-4 с 3) 0-1 с и 2 с-3 с 4) только 1 с-2 с

8. Внутри катушки, соединённой с гальванометром, находится малая катушка, подключённая к источнику тока. Оси катушек совпадают. Первую секунду от начала эксперимента малая катушка неподвижна внутри большой катушки. Затем в течение следующей секунды её вращают относительно вертикальной оси по часовой стрелке. Третью секунду малая катушка вновь остаётся в покое. В течение четвёртой секунды малую катушку вращают против часовой стрелки. В какие промежутки времени гальванометр зафиксирует появление индукционного тока в катушке?

1) индукционный ток может возникнуть в любой промежуток времени 2) индукционный ток возникнет в промежутках времени 1-2 с, 3-4 с 3) индукционный ток не возникнет ни в какой промежуток времени 4) индукционный ток возникнет в промежутках времени 0-1 с, 2-3 с

9. К электромагнитным волнам относятся:

A. Волны на поверхности воды. Б. Радиоволны. B. Световые волны.

Укажите правильный ответ.

1) только А 2) только Б 3) только В 4) Б и В

10. Какие из приведённых ниже формул могут быть использованы для определения скорости электромагнитной волны?

A. ​\( v=\lambda\nu \)​ Б. \( v=\frac{\lambda}{\nu} \) В. \( v=\frac{\lambda}{T} \) Г. \( v=\lambda T \)

1) только А 2) только Б 3) А и В 4) В и Г

11. Установите соответствие между названием опыта (в левом столбце таблицы) и явлением, которое в этом опыте наблюдается (в правом столбце таблицы). В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА A) опыты Фарадея Б) опыт Эрстеда B) опыт Ампера

ХАРАКТЕР ИЗМЕНЕНИЯ ЗНАЧЕНИЯ ВЕЛИЧИНЫ 1) действие проводника с током на магнитную стрелку 2) электромагнитная индукция 3) взаимодействие проводников с током

12. Установите соответствие между техническими устройствами и физическими явлениями, лежащими в основе их работы.

ТЕХНИЧЕСКИЕ УСТРОЙСТВА A) генератор электрического тока Б) электрический двигатель B) электромагнитное реле

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ 1) взаимодействие постоянных магнитов 2) взаимодействие проводников с током 3) возникновение электрического тока в проводнике при его движении в магнитном поле 4) магнитное действие проводника с током 5) действие магнитного поля на проводник с током

Часть 2

13. На какую частоту нужно настроить радиоприёмник, чтобы слушать радиостанцию, которая передает сигналы па длине волны 2,825 м?

1) 106,2 кГц 2) 106,2 МГц 3) 847,5 кГц 4) 847,5 МГц