Как получить электричество из воздуха своими руками

Содержание

Генератор Стивена Марка

Есть еще одна интересная и рабочая схема — генератор TPU, позволяющий добыть электричество из атмосферы. Ее придумал знаменитый исследователь Стивен Марк.

С помощью этого прибора можно накопить определенный электрический потенциал для обслуживания бытовых приборов, не задействуя при этом дополнительную подпитку. Технология была запатентована, в результате чего сотни энтузиастов пытались повторить опыт в домашних условиях. Однако из-за специфических особенностей ее не удалось пустить в массы.

Работа генератора Стивена Марка осуществляется по простому принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают появление токовых ударов. Для создания тороидального генератора нужно придерживаться следующей инструкции:

  1. В первую очередь следует подготовить основание прибора. В качестве него можно использовать отрезок фанеры в форме кольца, кусок резины или полиуретана. Также необходимо найти две коллекторные катушки и катушки управления. В зависимости от чертежа размеры конструкции могут отличаться, но оптимальным вариантом являются следующие показатели: наружный диаметр кольца составляет 230 мм, внутренний — 180 мм. Ширина составляет 25 мм, толщина — 5 мм.
  2. Необходимо намотать внутреннюю коллекторную катушку, используя многожильный медный провод. Для лучшего взаимодействия применяют трехвитковую намотку, хотя специалисты уверены, что и один виток сможет запитать лампочку.
  3. Также следует подготовить 4 управляющие катушки. При размещении этих элементов нужно соблюдать прямой угол, иначе могут появиться помехи магнитному полю. Намотка этих катушек плоская, а зазор между витками составляет не больше 15 мм.
  4. Осуществляя намотку управляющих катушек, принято задействовать одножильные провода.
  5. Чтобы выполнить установку последней катушки, следует применить заизолированный медный провод, который наматывают по всей площади основания конструкции.

Метод получения электричества по Белоусову

Валерий Белоусов много лет изучает молнии и защиту от них. Он является автором книг о бесплатной энергии и разработал ряд решений, чтобы получить электричество из земли.

На схеме вы можете видеть два условных обозначения заземления. Здесь один из них – это заземлитель, а второй, рядом с которым буква «А» – ноль бытовой электросети. На следующем видео демонстрируется работа такой установки и описываются результаты, полученные с её помощью:

Полученной энергии достаточно чтобы запитать светодиодную лампу на 220 Вольт малой мощности. Такой способ удобно использовать на даче, он может быть легко воспроизведён в домашних условиях.

Получение бесплатного электричества из земли своими руками возможно. Но говорить о практическом применении и подключении мощных потребителей сложно. Холодильник вы так не запустите. На сегодняшний день единственным хорошо изученным источником электроэнергии из недр земли являются природные ресурсы, такие как уголь, газ, топливо для атомных электростанций и т.д.

Наверняка вы не знаете:

  • Как экономить электроэнергию в доме
  • Как сделать ветрогенератор своими руками
  • Освещение гаража без электричества

Как получить энергию из эфира своими руками?

Микроквантовые эфирные потоки у многих подобных генераторов — главные источники, откуда поступает энергия для генераторов. Системы можно пробовать подключать через конденсаторы, литиевые батарейки. Можно выбирать различные материалы в зависимости от показателей, которые они дают. Тогда и количество кВт будет разным.

Пока что свободная энергия — явление мало изученное на практике. Поэтому сохраняется много пробелов при конструировании генераторов. Только практические эксперименты помогают найти ответ на большинство вопросов. Но многие крупные производители электронных устройств уже заинтересованы в этом направлении.

Микроволны

Неужели нет другого реально работающего способа передать электричество без проводов. Есть, и его изобрели еще до попыток и детских игр в звездные войны.

Оказывается, что специальные микроволны с длиной в 12см (частота 2,45Ггц), являются как бы прозрачными для атмосферы и она им не мешает в распространении.

Какой бы ни была плохой погода, при передаче с помощью микроволн, вы потеряете всего пять процентов! Но для этого вы сначала должны преобразовать электрический ток в микроволны, затем их поймать и опять вернуть в первоначальное состояние.

Первую проблему ученые решили очень давно. Они изобрели для этого специальное устройство и назвали его магнетрон.

Причем это было сделано настолько профессионально и безопасно, что сегодня каждый из вас у себя дома имеет такой аппарат

Зайдите на кухню и обратите внимание на свою микроволновку

У нее внутри стоит тот самый магнетрон с КПД равным 95%.

Но вот как сделать обратное преобразование? И тут было выработано два подхода:

Американский

Советский


В США еще в шестидесятых годах ученый У.Браун придумал антенну, которая и выполняла требуемую задачу. То есть преобразовывала падающее на него излучение, обратно в электрический ток.

Он даже дал ей свое название — ректенна.

После изобретения последовали опыты. И в 1975г при помощи ректенны, было передано и принято целых 30 квт мощности на расстоянии более одного километра. Потери при передаче составили всего 18%.

Спустя почти полвека, этот опыт до сих так никто и не смог превзойти. Казалось бы метод найден, так почему же эти ректенны не запустили в массы?

И тут опять всплывают недостатки. Ректенны были собраны на основе миниатюрных полупроводников. Нормальная работа для них — это передача всего нескольких ватт мощности.

А если вы захотите передать десятки или сотни квт, то готовьтесь собирать гигантские панели.

И вот тут как раз таки появляются не разрешимые сложности. Во-первых, это переизлучение.

Мало того, что вы потеряете из-за него часть энергии, так еще и приблизиться к панелям без потери своего здоровья не сможете.

Вторая головная боль — нестабильность полупроводников в панелях. Достаточно из-за малой перегрузки перегореть одному, и остальные выходят из строя лавинообразно, подобно спичкам.

В СССР все было несколько иначе. Не зря наши военные были уверены, что даже при ядерном взрыве, вся зарубежная техника сразу выйдет из строя, а советская нет. Весь секрет тут в лампах.

В МГУ два наших ученых В.Савин и В.Ванке, сконструировали так называемый циклотронный преобразователь энергии. Он имеет приличные размеры, так как собран на основе ламповой технологии.

Внешне это что-то вроде трубки длиной 40см и диаметром 15см. КПД у этого лампового агрегата чуть меньше, чем у американской полупроводниковой штуки — до 85%.

Но в отличие от полупроводниковых детекторов, циклотронный преобразователь энергии имеет ряд существенных достоинств:

надежность

большая мощность

стойкость к перегрузкам

отсутствие переизлучения

невысокая цена изготовления

Однако несмотря на все вышесказанное, во всем мире передовым считаются именно полупроводниковые методы реализации проектов. Здесь тоже присутствует свой элемент моды.

После первого появления полупроводников, все резко начали отказываться от ламповых технологий. Но практические испытания говорят о том, что это зачастую неправильный подход.

Конечно, ламповые сотовые телефоны по 20кг или компьютеры, занимающие целые комнаты никому не интересны.

Но иногда только проверенные старые методы, могут нас выручить в безвыходных ситуациях.

В итоге на сегодняшний день, мы имеем три возможности передать энергию без проводов. Самый первый из рассмотренных ограничен как расстоянием, так и мощностью.

Но этого вполне хватит, чтобы зарядить батарейку смартфона, планшета или чего-то побольше. КПД хоть и маленький, но метод все же рабочий.

Способ с лазерами хорош только в космосе. На поверхности земли это не очень эффективно. Правда когда другого выхода нет, можно воспользоваться и им.

Зато микроволны дают полет для фантазий. С их помощью можно передавать энергию:

на земле и в космосе

с поверхности земли на космический корабль или спутник

и наоборот, со спутника в космосе обратно на землю

Бесплатное электричество из земли

Земля благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность — капли воды;
  • твердость — минералы;
  • газообразность — воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как его основной гумусовый комплекс представляет собой систему, на внешней оболочке которого формируется отрицательный заряд, а на внутренней положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно в 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединить между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобиться таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.

На фото готовый к работе генератор Капанадзе

Простые схемы

Существуют довольно простые схемы, которые помогут создать устройство, способное осуществлять получение и накопление электрической энергии, которая содержится в воздухе. Этому способствует наличие в современном мире множество сетей, линий электропередач, которые способствуют ионизации воздушного пространства.

  • Это одна из самых простейших схем, благодаря которой можно соорудить устройство для получения электроэнергии из воздуха своими руками. В принципе, ничего сложного в этом нет. Земля может послужить основанием, в то время когда антенной может выступать металлическая пластина, которая помещена над землёй. Это позволяет устройству накопить содержащийся электрический потенциал в воздухе, который впоследствии может быть использован.
  • Следует помнить, что создание такого простого устройства своими руками даже по такой несложной схеме, может быть сопряжено с определёнными рисками. Дело в том, что при работе такого устройства создаётся принцип молнии, что может представлять определённую опасность при работе с таким прибором.

Создать устройство, получающее электричество из воздуха, можно и своими руками, используя лишь довольно простую схему. Также существуют различные видео, которые смогут стать той необходимой инструкцией для пользователя.

К сожалению, создать мощный прибор своими руками весьма непросто. Более сложные устройства предполагают использование более серьёзных схем, что иногда существенно затрудняет создание такого прибора.

Можно попытаться создать более сложный прибор. В интернете приведены более сложные схемы, а также видеоинструкции.

Что нужно для создания простой станции получения энергии?

Как же реализовать получение электричества из воздуха? Минимум, нужный для забора электрической энергии из воздуха, – земля и железная антенна. Между этими проводниками с различной полярностью ставится электрический потенциал, который скапливается в течении долгого времени

Беря во внимание непостоянность величины, высчитать её силу практически нереально. Аналогичная станция не прекращает работу как молния: разряд тока происходит спустя какой то период, когда достигается самый большой потенциал

Этим методом можно получить достаточно много электрической энергии, чтобы поддерживать работу электроустановки.

Ветрогенераторы

Представляют собой комбинацию установленной на специальной мачте ветротурбины с лопастями и электрогенератора. При прохождении потоков воздуха через данную установку лопасти под их воздействием начинают вращаться и приводят в движение соединённый с редуктором внутренний вал.

Такая конструкция позволяет увеличить первоначальную скорость вращения. Редуктор подключён к генератору, который при вращении ротора вырабатывает электрический ток. Его излишки накапливаются в установленных аккумуляторах.

В зависимости от расположения оси вращения ветрогенераторы подразделяются на горизонтальные и вертикальные. Первый тип более популярен. Многие модели оснащены системой автоматического разворота по направлению ветра, значительно увеличивающей эффективность работы установки.

Преимущества данных устройств во многом аналогичны солнечным батареям. КПД может составлять от 25% до 47% в зависимости от конкретной модели и погодных условий.

Подсветка

Если вы решили усовершенствовать приборную панель на своем автомобиле, то начните с подсветки.

Самым оптимальным решением будет замена обычных лампочек на светодиодные и этому есть разумное объяснение:

Срок службы светодиодных элементов гораздо больше, чем ламп накаливания. Заменив лампочки на светодиоды один раз вам скорее всего не придется больше разбирать панель для того, чтобы поменять перегоревшую подсветку.

Несмотря на то, что размеры светодиодов гораздо меньше, они обладают гораздо большей яркостью.

Замена всех лампочек в автомобиле на светодиодные элементы значительно снизит нагрузку на аккумулятор и проводку, так как потребление электроэнергии у них в разы ниже.

Что такое атмосферное электричество

Первым действительно занялся трудностью талантливый Никола Тесла. Источником возникновения свободной электроэнергии Тесла считал солнечную энергию. Созданный им прибор получал электрическую энергию из воздуха и земли. Тесла планировал разработку способа передачи получившейся энергии на значительные расстояния. Патент описывал предложенный прибор, как использующий энергию излучения.

Устройство Теслы было революционным для собственного времени, но объем получаемой им электрической энергии был маленьким, и рассматривать атмосферное электричество как экологически чистый источник энергии, было ошибочно. Совершенно недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в значительных объемах. Его тороидальный генератор может подавать электричество для ламп общего назначения и очень сложных приборов для домашнего применения. Он функционирует продолжительное время, не требуя внешней подпитки. Работа такого прибора основывается на резонансных частотах, магнитных вихрях и токовых ударе в металле.

На фото рабочий образец тороидального генератора Стивена Марка

Технология

Чуть ниже рассматриваются варианты получения бесплатного электричества.

Ветряная электростанция. Голландия предлагает построить ветряную ферму огромных размеров в Северном море, и искусственный, оснащённый необходимым оборудованием остров, который возьмёт на себя роль энергетического хаба, распределяя электричество между 5 государствами.

Саудовская Аравия предложила создать турбины в виде “бумажных змеев”, и расположить их в воздухе, а не на земле. Несколько  стран имеют собственные поля с ветряными генераторами.

Грозовая батарея – накопитель энергии от разрядов в атмосфере. Молнии перенаправляются в электросеть.

Тороидальный генератор TPU состоит из 3 катушек. Магнитный вихрь и резонансные частоты являются причиной появления тока. Изобрёл его С.Марк.

Приливные электростанции – работа зависит от приливов и отливов, положения Земли и Луны.

Тепловая электростанция – в качестве ресурса используются высокотемпературные грунтовые воды.

Сила человеческих мускулов – люди также вырабатывают энергию при движении, что можно использовать.

Термоядерный синтез – процессом можно управлять. Синтезируются более тяжёлые ядра из более лёгких. Способ не применяется, поскольку очень опасен.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в магнитных двигателях. А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.

Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­H.

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Энергия из воздуха своими руками

Создаем ветрогенератор своими руками в домашних условиях

Несложный маломощный ветряк можно создать и в домашних условиях. Исходя из выбранного типа ветрогенератора, можно приступать к его сборке. Пример сборки ветрогенератора будет рассматриваться на гибридной модели, совмещающей в себе генератор Дарье и Савониуса. Сборка ротора Основу ротора составят. 6 неодимовых магнитов типа D30xH10 мм, далее следует 6 кольцевых магнитов из феррита D72xd32xh15 мм и два металлических диска D230xH5 мм, закрепляться детали будут при помощи эпоксидной смолы и клея.

Ротор ветряка своими руками

Ротор ветряка своими руками На каждом из металлических дисков размещаются неодимовые магниты в количестве 6 шт., при этом нужно чередовать их полярность и размещать под углом в 60 градусов, диаметр окружности установленных магнитов должен составлять 165 мм.

Размеры ротора

Размеры ротора На втором диске подобным образом размещаются кольцевые магниты. Для того чтобы в процессе работы магниты прочно «сидели» на своих местах их заливают эпоксидной смолой.

Собираем статор

Основой для статора будут служить 9 катушек с намотанными 60 витками на каждой, толщина используемого провода должна составлять 1 мм. Далее, последовательно соединяют 1,4,7-ю катушки для первой фазы, 2,5,8 для второй фазы и, соответственно 3,6,9 для третьей.

Статор ветряка В заранее приготовленную форму из фанеры укладываются — слой пергаментной бумаги, стекловолокно и готовые катушки. После этого содержимое заливается эпоксидкой. После застывания из формы достают готовый статор.

Схема статора

Собираем генератор

Все составные части генератора готовы, и можно приступать к их сборке. Генератор будет закреплен при помощи кронштейна со шпильками. Сборка генератора состоит из нескольких этапов:

  1. В нижнем и верхнем роторах размечаются и просверливаются 4 отверстия, далее нарезается резьба для шпилек. Это нужно для того чтобы плавно посадить роторы на установленное место.
  2. В статоре аналогично ротору сверлятся такие же отверстия для шпилек.
  3. На кронштейн крепится нижний ротор магнитами кверху, потом укладывается статор и верхний ротор, обращенный магнитами вниз.
  4. Вся конструкция фиксируется шпильками и гайками к фланцу с подшипниками.

Статор ветряка

Изготовление лопастей для ветряка

Генератор ветряка Лопасти ветряка изготавливают из различных материалов: дерево, стеклоткань, алюминий. Довольно интересным решением является изготовление лопастей из ПВХ труб. Такая конструкция хороша тем, что она имеет очень маленький вес и позволяет вращаться генератору даже при очень низкой скорости ветра.

  • Берутся метровые заготовки из ПВХ трубы и разрезаются вдоль на две равные части.
  • Вырезаются полукруги будущих лопастей из жести и крепятся болтами по краям труб. Для изготовления можно использовать оцинкованную сталь, имеющую толщину 0,75 мм.

Изготовление лопастей для ветряка

Для изготовления ортогональных лопастей, необходимо вырезать два куска жести размерами 1000х40 мм и 4 части в форме капли. Отрезки сгибаются на краях и к ним крепятся капли. Лопасти крепятся к готовому каркасу размером 200х200 мм. Далее, ветряк устанавливается на мачту и производится монтаж проводов и оборудования. Такие ветряки не очень сложны в сборке и позволят стать владельцам дач и частных домов автономными от энергосетей.

Гидроэнергия

Гидроэнергия представляет собой солнечную энергию, преобразованную в потенциальную энергию, накопленную в плотине или водохранилище естественных и искусственных водоемов. Гидроэнергию можно преобразовывать в механическую либо электроэнергию с помощью гидротурбин. Данные установки называют гидроэлектростанциями (ГЭС).

2. Солнечная энергия

Солнечная энергия используется обычно для отопления, приготовления пищи, производства электроэнергии и даже для опреснения морской воды. Солнечная энергия работает, захватывая солнечные лучи в солнечные батареи, где этот солнечный свет затем преобразуется в электричество. Кроме того, солнечная энергия использует солнечный свет, который поражает солнечные тепловые панели, чтобы преобразовать солнечный свет, чтобы нагреть воду или воздух. Другие методы включают использование солнечного света, который поражает параболические зеркала, чтобы нагреть воду (создавая пар) или просто открывая жалюзи в комнатах или оттенки окна, чтобы позволить солнечному свету пассивно нагревать комнату.

Опыты известных учёных

Можно обратиться к трудам уже известных учёных, которые в прошлом пытались получать электричество буквально из воздуха. Одним из таких людей является знаменитый учёный Никола Тесла. Он был первым человеком, который задумался о том, что электроэнергию можно получить, грубо говоря, из ничего.

Конечно, во времена Тесла не было возможности записать все его опыты на видео, поэтому на данный момент специалистам приходится воссоздавать его устройства и результаты его исследования согласно его записям и старым свидетельствам его современников. И, благодаря многим опытам и исследованиям современных учёных, можно соорудить устройство, которое позволит осуществить получение электричества.

Тесла определил, что между основанием и поднятой металлической пластиной существует электрический потенциал, представляющий собой статическое электричество, также он определил, что его можно накапливать.

Впоследствии Никола Тесла смог сконструировать такое устройство, которое смогло накапливать незначительное количество электроэнергии, используя лишь тот потенциал, который содержится в воздухе. Кстати, сам Тесла предполагал, что наличием электричества в своём составе, воздух обязан солнечным лучам, которые при пронизывании пространства буквально делится своими частицами.

Если обратиться к изобретениям современных учёных, то можно привести пример устройства Стивена Марка, который создал тороидальный генератор, позволяющий удерживать намного больше электроэнергии, в отличие от простейших изобретений подобного рода. Его преимущество заключается в том, что это изобретение способно обеспечить электричеством не только слабые осветительные приборы, но и довольно серьёзные бытовые приборы. Этот генератор способен осуществлять свою работу без подпитки в течение довольно длительного времени.

Мифы и реальность

Попытки рядовых граждан самостоятельно, в обход государственных тарифов, «добыть» электричество, обросли множеством слухов и домыслов:

Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.

Опровержение: для того, чтобы в принципе извлечь электричество из земли, необходимо выполнение множества условий, в числе которых – особые качества почвы, металлический штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.

Ни одно из этих условий не может быть выполнено идеально, так что электричество, добываемое таким образом, совсем не вечно.

Миф второй: энергия земли бесплатна.

Опровержение: частично это так: человек может делать со своим личным земляным участком все, что угодно. Но для того, чтобы получить хоть какой-то электрический заряд, нужно много земли.

Миф третий: электричество, которое можно получить благодаря земле, имеет огромную мощность.

Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень медленную зарядку простенького мобильного телефона или зажигание небольшой лампочки. Для того, чтобы вскипятить электрический чайник, зарядить ноутбук или включить холодильник, понадобится столько земли, металлических штырей и проводов, что одной семье нужны будут безграничные наделы и финансы.

Реферат патента 2008 года ДВУХУРОВНЕВЫЙ СПОСОБ АККУМУЛИРОВАНИЯ ГРОЗОВОЙ И АТМОСФЕРНОЙ ЭЛЕКТРОЭНЕРГИИ

Изобретение относится к области приборостроения и может быть использовано для накопления электрической энергии в любой точке Земли и в любое время, для обеспечения эффективной молниезащиты. Технический результат — расширение функциональных возможностей. Согласно изобретению аккумулирование электроэнергии осуществляют при помощи двух электропроводящих оболочек сферической или иной формы, внутри каждой из которых помещают аэростат. Оболочки помещают в атмосфере на двух разных уровнях относительно поверхности Земли при помощи тросов из диэлектрического материала и двух лебедок. Величиной разности уровней определяют максимальное количество аккумулируемой электроэнергии и передают ее по двум изолированным электропроводам в емкостный накопитель. При этом один электропровод связывает электропроводящую оболочку, удерживаемую на верхнем уровне, с емкостным накопителем через предохранитель, индуктивность, амперметр и одновентильный выпрямитель. К предохранителю подсоединяют разрядник и емкостной накопитель. 1 ил.

Заключение

В результате проведенных действий, к отрицательному полюсу подключение производится путем заземления, а к положительному — при помощи проводника, конвективного тока (то есть того же электрического, но в котором перенос заряженных частиц происходит упорядоченно).

Получается, что такой источник является простым и удобным в устройстве и эксплуатации, экологически чистым и исключительно дешевым.

Конечно, он подвержен колебаниям, в зависимости от времени года и погодных условий. Но обычно эти природные явления составляют не более 30% от средних показателей. В любом случае, как альтернативный источник энергии, электричество из земли представляется очень перспективным.