Напряженность электрического поля

Содержание

Введение

С электричеством вы сталкиваетесь постоянно. Вы видели молнию, вы освещаете комнату с помощью электрической лампочки, электрообогреватель выделяет тепло – все эти явления связаны с движением электрического заряда. С неподвижным электрическим зарядом вы тоже сталкивались, когда после расчесывания получали наэлектризованные волосы. Они разлетаются в разные стороны. Электрические заряды находятся без преувеличения везде, из них состоит любое вещество! На этом уроке мы выясним то, что нам известно про заряды. Как известно, в природе встречаются заряды двух типов – положительные и отрицательные. Разноименные заряды притягиваются, одноименные – отталкиваются. Это взаимодействие происходит на любом расстоянии. Как же они тогда взаимодействуют? Для этого существует электрическое поле. Вокруг каждого заряда существует такое поле и если в него попадает еще один заряд, то он начинает «чувствовать» это поле: на него начинают действовать силы притяжения или отталкивания соответственно.

В природе есть много ненаблюдаемого. Например, мы не видим ветер, но видим, как он раскачивает ветви деревьев. Мы не видим температуру, но мы видим, как нагретые тела расширяются. По расширению, например, ртути в термометре, мы можем температуру измерять (см. рис. 1).

Рис. 1. Расширение ртути

Т. е. мы наблюдаем проявление чего-то и на основе этих наблюдений судим о том, чего непосредственно не наблюдаем. Заряд мы тоже изучаем по его проявлению. Мы не видим заряды, но наблюдаем их взаимодействие. Один заряд действует на другой на расстоянии через электрическое поле. Поле заряда – это пространство, где на другие заряды будет действовать сила.

Взаимодействие тел через поле нам уже знакомо. Тело, обладающее массой, создает вокруг себя поле – гравитационное, которое проявляется в действии на другое тело, обладающее массой. Их взаимодействие подчиняется закону всемирного тяготения (см. рис. 2).

Рис. 2. Взаимодействие массивных тел

Закон всемирного тяготения

Вокруг тела, обладающего массой, возникает гравитационное поле. Посредством этого поля массы взаимодействуют, притягиваются. Сила их притяжения пропорциональна величине каждой из масс и обратно пропорциональна квадрату расстояния между ними (см. рис. 3):

– константа, гравитационная постоянная, равна .

Рис. 3. Закон всемирного тяготения

Квадрат расстояния встречается во многих физических формулах, так что это позволяет говорить о законе, связывающем величину эффекта с квадратом расстояния от источника воздействия:

Эта пропорциональность справедлива для гравитационного, электрического, магнитного действия, силы звука, света, радиации, распространяющихся от источника. Связано это, конечно, с тем, что площадь поверхности сферы распространения эффекта увеличивается пропорционально квадрату расстояния (см. рис. 4). Это будет выглядеть естественным, если вспомнить, что площадь сферы пропорциональна квадрату радиуса:

и тогда понятно, что сила действия от источника вдали от него должна распределяться по сфере всё большего радиуса.

Рис. 4. Площадь сферы распространения эффекта увеличивается с увеличением радиуса сферы

Итак, электрические заряды взаимодействуют через электрическое поле, которое они вокруг себя создают.

Что такое электрический заряд в каких единицах он измеряется

Простое объяснение понятия электрический заряд. Что это за величина, в чем она измеряется и как, собственно, ее измеряют.

В природе не все можно объяснить с точки зрения механики, МКТ и термодинамики, есть и электромагнитные явления, которые воздействуют на тело, при этом не зависят от их массы. Способность тел быть источником электромагнитных полей характеризуется физической скалярной величиной – электрическим зарядом

Его впервые вывели в законе Кулона в 1785 году, но обратили внимание на его существование еще до нашей эры. В этой статье мы простыми словами расскажем о том, что такое электрический заряд и как он измеряется

История открытий

Еще в древности было замечено, что если потереть янтарь о шелковую материю, то камень начнет притягивать к себе легкие предметы. Уильям Гильберт изучал эти опыты до конца XVI века. В отчете о проделанной работе предметы, которые могут притягивать другие тела, назвал наэлектризованными.

Следующие открытия в 1729 году сделал Шарль Дюфе, наблюдая за поведением тел при их трении об разные материи.

Таким образом он доказал существование двух видов зарядов: первые образуются при трении смолы о шерсть, а вторые – при трении стекла о шелк. Следуя логике, он назвал их «смоляными» и «стеклянными».

Шарлем Кулоном, портрет которого изображен ниже, был открыт закон, который впоследствии был назван Законом Кулона. Он описывал взаимодействие двух точечных зарядов. Также смог измерить величину и изобрел для этого крутильные весы, о которых мы расскажем позже.

И уже в начале прошлого века Роберт Милликен, в результате проведенных опытов, доказал их дискретность. Это значит, что заряд каждого тела равен целому кратному элементарного электрического заряда, а элементарным является электрон.

Теоретические сведения

Электрическим зарядом называется способность тел создавать электромагнитное поле. В физике раздел электростатики изучает взаимодействия неподвижных относительно выбранной инерциальной системы отчета зарядов.

В чем выражается взаимодействие

Электрические заряды притягиваются и отталкиваются друг от друга. Это похоже на взаимодействие магнитов. Всем знакомо, что если потереть линейку или шариковую ручку о волосы – она наэлектризуется.

Если в этом состоянии поднести её к бумаге, то она прилипнет к наэлектризованному пластику.

При электризации происходит перераспределение зарядов, так что на одной части тела их становится больше, а на другой меньше.

По этой же причине вас иногда бьёт током шерстяной свитер или другие люди, когда вы их касаетесь.

Вывод: электрические заряды с одним знаком стремятся друг к другу, а с разными – отталкиваются. Они перетекают с одного тела на другое, когда касаются друг друга.

Способы измерения

Существует ряд способов измерения электрического заряда, давайте рассмотрим некоторые из них. Измерительный прибор называется крутильными весами.

Весы Кулона – это крутильные весы его изобретения. Смысл заключается, в том, что в сосуде на кварцевой нити подвешена легкая штанга с двумя шариками на концах, и один неподвижный заряженный шарик. Вторым концом нить закреплена за колпак.

Неподвижный шарик вынимается, для того чтобы сообщить ему заряд, после этого нужно установить его обратно в сосуд. После этого подвешенная на нити часть начнет движение. На сосуде нанесена проградуированная шкала.

Принцип его действия отражен на видео.

Другой прибор для измерения электрического заряда – электроскоп. Он, как и предыдущие, представляет собой стеклянный сосуд с электродом, на котором закреплено два металлических листочка из фольги.

Заряженное тело подносят к верхнему концу электрода, по которому заряд стекает на фольгу, в результате оба листочка окажутся одноименно заряженными и начнут отталкиваться.

Величину заряда определяют по тому, насколько сильно они отклонятся.

Электрометр – еще один измерительный прибор. Состоит из металлического стержня и вращающейся стрелки. При прикосновении к электрометру заряженным телом, заряды стекают по стержню к стрелке, стрелка отклоняется и указывает на шкале определенную величину.

Напоследок рекомендуем просмотреть еще одно полезное видео по теме:

Ионизаторы воздуха положительно воздействуют на организм человека: ускоряют процесс доставки кислорода из воздуха к клеткам. Примером такого прибора является люстра Чижевского.

Теперь вы знаете, что такое электрический заряд и как его измеряют.

Материалы по теме:

  • Как перевести ватты в киловатты
  • Закон Джоуля-Ленца простыми словами
  • Что такое статическое электричество

Кулоновская сила

Концепция Кулона характеризует взаимодействие между двумя зарядами, пребывающими в состоянии покоя. Она гласит: два недвижимых заряда отталкивают либо притягивают один другого с силой, которая прямо пропорциональна произведению величин зарядов, но обратна длине расстояния между этими зарядами во второй степени. Вместе с этим, сила взаимодействия пары зарядов не может измениться при присутствии третьего.

С помощью кулоновского принципа естествоиспытатель может отыскать состояние равновесия в ситуации свободного перемещения зарядов под воздействием силы другого типа, при котором заряды будут распределяться с постоянным коэффициентом. Сила Кулона предопределена третьим законом Ньютона, который утверждает, что заряды воздействуют один на другого с силами, которые равны по модулям, но противоположны по направлениям.

Суперпозиция полей

Закон Кулона и все вытекающие из него утверждения являются лишь основой для другого, более масштабного принципа – закона суперпозиции. Исходя из этого фундаментального утверждения, силы, которые действуют на заряды, каждый из которых располагается в конкретной точке объединённой системы, являют собой сумму сил, имеющих строгое направление и формируемых отдельными группами зарядов по отдельности и влияющих на заряды в конкретных точках.

Принцип суперпозиции полей

В отличие от закона Кулона, принцип суперпозиции может быть недостаточным в рамках некоторых квантовых явлений в электрическом поле.

Определение поперечного сечения проводов или кабелей по условию допустимой потери напряжения

Выбор поперечного сечения проводников в кабельной сети должен производиться по допускаемой потере напряжения, которая устанавливается с таким расчетом, чтобы отклонения напряжения для всего присоединенного к этой сети электрооборудования не выходили за пределы допустимого.

Номинальные напряжения на выходе систем электроснабжения (по ГОСТу 21128-83):

Согласно ГОСТу 13109-97:

  • Нормально допустимое значение установившегося отклонения напряжения — ±5.
  • Предельно допустимое значение установившегося отклонения напряжения — ±10.

Активное и индуктивное сопротивление линии

Активное сопротивление линии (Ом/км) равно:

Значение индуктивного сопротивления проводников Расчет сети по потере напряжения без учета индуктивного сопротивления проводов допустим в следующих случаях:

  • для сети постоянного тока;
  • переменного тока при cosφ = 1
  • для сетей, выполненных кабелями или изолированными проводами, проложенными в трубах на роликах или изоляторах, если их сечении не превосходят величин, указанных в таблице ниже.

Формулы расчёта сечения проводников при заданной величине потери напряжения

Трёхфазная линия переменного тока:

Двухпроводная линия переменного или постоянного тока:

Где γ — удельная проводимость материала проводов, м/(Ом×мм2);

Uн — номинальное напряжение сети, кВ (для трехфазной сети Uн — междуфазное напряжение);

∆Uдоп — допустимая потеря напряжения в линии, сечение которой определяется, %.

F — сечение проводников, мм2;

∑P∙L=P1∙L1+P2∙L2+…— сумма произведений нагрузок, протекающих по участкам линии, на длину этих участков; нагрузки должны выражаться в киловаттах, длины в метрах;

∑Iа∙L= Iа1 ∙L1+ Iа2 ∙L2+…— сумма произведений проходящих по участкам активных составляющих токов на длины участков;

Токи должны выражаться в амперах, длины — в метрах.

Активные составляющие тока (А) определяются умножением величин токов на величины коэффициентов мощности Iа = I∙ cos ɸ.

Общие сведения

Как ни удивительно, но мы сталкиваемся со статическим электричеством ежедневно — когда гладим любимую кошку, расчесываем волосы или натягиваем свитер из синтетики. Так мы сами поневоле становимся генераторами статического электричества. Мы буквально купаемся в нём, ведь мы живем в сильном электростатическом поле Земли. Это поле возникает из-за того, что её окружает ионосфера, верхний слой атмосферы — электропроводящий слой. Ионосфера образовалась под действием космического излучения и имеет свой заряд. Занимаясь обыденными делами вроде разогрева пищи, мы совершенно не задумываемся о том, что пользуемся статическим электричеством, повернув кран подачи газа на горелке с автоподжигом или поднеся к ней электрозажигалку.

Квантование электрического заряда[править | править код]

Каждый наблюдаемый в эксперименте электрический заряд постоянно кратен элементарному. Это предположение было высказано Б. Франклином в г. и неоднократно проверялось экспериментально. Элементарный заряд был вычислен в г. М. Фарадеем.

Так как электрический заряд встречается в природе только в виде целого числа элементарных зарядов, можно говорить о квантовании электрического заряда. В классической электродинамике вопрос о причинах квантования заряда не обсуждается, т.к. заряд является внешним параметром, а не динамической переменной. Общепринятого объяснения, почему заряд обязан квантоваться, пока нет, хотя имеются некоторые заключения:

  • Если в природе существует магнитный монополь, то согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что одно только существование магнитного монополя влечёт за собой квантование заряда. Дело лишь за малым: обнаружить в природе магнитный монополь.
  • В современной физике элементарных частиц идут поиски модели наподобие преонной, в которой все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц было бы следствием свойств этих фундаментальных частиц.
  • Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В такой теории величина электрического заряда частиц должна вычисляться из малого числа фундаментальных параметров, возможно связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени. Тем не менее, конкретных общепринятых результатов в этом направлении пока не получено.
  • В субстанциональной модели электрона постоянство заряда электрона связывается с происхождением электронов при бета-распаде нейтронов, когда одновременно возникают протоны и электроны с одинаковым по модулю электрическим зарядом. В таком случае значение заряда электрона вытекает из квантованности свойств нейтрона и обусловлено закономерностями бета-распада.

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомится с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

Электризация соприкосновением — это процесс, при котором мы берем два проводящих тела: отрицательно заряженное и нейтральное.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

Электризации трением — это когда мы берем два незаряженных тела и трем их друг о друга.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс 🙂

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

А. Стекло

Б. Эбонит

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит.
А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Воздействие электрического поля на жизнь и здоровье человека

Электрическое поле волны низкой частоты, которые образуют заряд на теле человека и остаются на довольно неглубоком расстоянии от его поверхности. Протекающие в человеческом теле токи могут изменить направление своего движения под воздействием полей с переменным электротоком. Именно по этой причине некоторые люди чувствуют «шевеление» волос, когда находятся на территории воздушных линий электропередач переменного тока.

Электрическое поле может нанести человеку непоправимый вред. Как правило, негативное воздействие электричества происходит, когда люди регулярно пользуются мобильными телефонами.

Ещё один пример возможного наблюдения электрического поля в повседневной жизни – его возникновение вблизи дисплеев телевизоров с кинескопом. Если поднести руку к экрану такого телеприёмника, волоски на ней словно «вздыбятся». Это явление происходит именно из-за воздействия электрического поля.

Еще рекомендую посмотреть лекцию профессора на тему “Электрическое поле”:

Измерение электричества

Цифровой мультиметр, позволяющий измерять ток, напряжение, сопротивление и проверять транзисторы.

Одним из первых измерительных приборов явился простейший электроскоп, изобретённый английским священником и физиком Абрахамом Беннетом — два листочка золотой электропроводной фольги, помещённые в стеклянную ёмкость. С тех пор измерительные приборы значительно эволюционировали — и теперь они могут измерять разницу в единицы нанокулон. С помощью особо точных физических инструментов, российский учёный Абрам Иоффе и американский физик Роберт Эндрюс Милликен сумели измерить электрический заряд электрона

Ныне, с развитием цифровых технологий, появились сверхчувствительные и высокоточные приборы с уникальными характеристиками, которые, благодаря высокому входному сопротивлению, почти не вносят искажений в измерения. Помимо измерения напряжения такие приборы позволяют измерять и другие важные характеристики электрический цепей, таких, как омическое сопротивление и протекающий ток в широком диапазоне измерений. Самые продвинутые приборы, называемые из-за их многофункциональности мультиметрами, или, на профессиональном жаргоне, тестерами, позволяют измерять также и частоту переменного тока, емкость конденсаторов и осуществлять проверку транзисторов и даже измерять температуру.

Как правило, современные приборы имеют встроенную защиту, не позволяющую вывести прибор из строя при неправильном применении. Они компактны, просты в обращении и абсолютно безопасны в работе — каждый из них проходит через ряд испытаний на точность, проверяется в тяжёлых режимах работы и заслужено получает сертификат безопасности.

Автор статьи: Сергей Акишкин

Потенциальная энергия электрического заряда и потенциальность полей

Заряды наполняют электрическое поле. Они двигаются по некоторым замкнутым траекториям. Величины работы их сил равняются нулю, и потому эти силы (или силовые поля) именуют потенциальными. Считается, что некоторые виды электрических полей, в частности, электростатическое поле, обладает свойством потенциальности изначально. Это доказанная теория, и она не требует новых исследований.

Потенциальная энергия

Благодаря свойству потенциальности физики могут судить о том, что потенциальная энергия присуща каждому электрическому заряду в конкретном поле. Наглядно проиллюстрировать этот принцип можно так: в пространстве имеется конкретная точка, в которую может быть перемещён конкретный заряд, величина потенциальной энергии которого будет равна нулю.

Силовые линии

Из закона потенциальности полей вытекает концепция его силовых линий. В действительности подобных объектов в вещественном виде не существует. Это графический инструмент, который позволяет изобразить электрическое поле для визуального схематического наблюдения и исследования. Через представление густоты и числа линий можно проиллюстрировать направление напряжённости поля, а также его величину.

Изображение силового поля

Элементарные частицы

Что же происходит с телами при электризации? Представьте себе два одинаковых металлических шара, но только один из них заряжен отрицательно, а другой не заряжен (см. рис. 10).

Рис. 10. Заряженный и незаряженный шары

Известно, что все тела состоят из атомов, а те, в свою очередь, состоят из протонов, нейтронов, электронов (см. рис. 11).

Рис. 11. Атом

Протоны заряжены положительно, электроны – отрицательно. Будем называть их элементарными зарядами, то есть неделимыми. Так вот, в большинстве случаев в атоме количество протонов равняется количеству электронов и получается, что они полностью компенсируют друг друга и в целом атом нейтрален

Важно понимать, что в атоме заряды никуда не исчезают, там по-прежнему есть положительные и отрицательные частицы, просто их действие на далекие предметы полностью компенсируется (см. рис. 12)

12).

Рис. 12. Действие частиц компенсировано

А вот в шаре, заряженном отрицательно, электронов больше, чем протонов, поэтому в целом в теле количество отрицательных элементарных зарядов больше, чем количество положительных элементарных зарядов, и тело заряжено отрицательно (см. рис. 13).

Рис. 13. Количество электронов в заряженном шаре

Заряд макроскопического тела (состоящего из большого количества атомов) – это величина, показывающая разность между положительными и отрицательными зарядами в теле. Если это количество одинаково, то заряд нулевой. Величина элементарного заряда известна и равна . Соответственно, заряд протона договорились считать положительным , а заряд электрона – отрицательным .

Что же происходит при трении тел друг о друга, например пластика о шерсть? Электроны с внешних оболочек атомов, входящих в состав шерсти, «перепрыгивают» на пластмассу (см. рис. 14).

Рис. 14. Движение электронов при трении

Получается, что в шерсти становится меньше отрицательных электронов и она заряжается положительно, а пластмасса – отрицательно, так как в ней появляется избыточное количество электронов. Можно даже сказать: если при контакте заряд одного тела увеличивается, то у другого уменьшается.

Что касается искр между людьми, то это происходит, если хотя бы один человек «заряжен» (допустим, человек ходил по шерстяному ковру, при трении подошвами по нему), и если другой человек не заряжен также, то заряд будет перетекать с одного человека на другого, иногда это перетекание может быть даже по воздуху, в таком случае и появляется искра. Стоит отметить, что искра появляется только благодаря движению электронов, протоны находятся в ядрах атомов, они менее подвижны и не могут покидать атомов отличие от электронов.

Зарядить тело можно и без контакта – через влияние электрическим полем. Представьте себе незаряженный шар, к которому подносят положительно заряженную палочку – разноименные заряды притягиваются, поэтому электроны, которые были в шаре, притянутся к положительно заряженной палочке и скопятся в той части шара, которая ближе к ней (см. рис. 15).

Рис. 15. Влияние положительно заряженной палочки на электроны

Почему незаряженные частицы фольги притягиваются к заряженной расческе?

Оказывается, незаряженный кусочек фольги будет притягиваться к заряженной расческе. Как же так? В целом кусочек фольги электрически нейтрален. Давайте посмотрим, что произойдет, если мы поднесем отрицательно заряженную расческу к кусочку фольги – отрицательно заряженная расческа притягивает к себе положительный заряд и отталкивает отрицательный. Поэтому электроны отодвинутся дальше от границы, а сторона, которая находится ближе к расческе, будет заряжена положительно (см. рис. 16) и притяжение будет сильнее, чем отталкивание, потому что положительная часть фольги находится ближе к расческе.

Рис. 16. Расположение электронов в фольге при поднесении расчески

Изучение статического электричества

К систематическому изучению природы электростатики учёные приступили со времён работ французского учёного 18-го века Шарля Огюстена де Кулона. В частности, он ввёл понятие электрического заряда и открыл закон взаимодействия зарядов. По его имени названа единица измерения количества электричества — кулон (Кл). Правда, ради исторической справедливости, надо заметить, что годами ранее этим занимался английский учёный лорд Генри Кавендиш; к сожалению, он писал в стол и его работы были опубликованы наследниками лишь спустя 100 лет.

Работы предшественников, посвященные законам электрических взаимодействий, дали возможность физикам Джорджу Грину, Карлу Фридриху Гауссу и Симеону Дени Пуассону создать изящную в математическом отношении теорию, которой мы пользуемся до сих пор. Главным принципом в электростатике является постулат об электроне — элементарной частице, входящей в состав любого атома и легко отделяющейся от него под воздействием внешних сил. Помимо этого, действуют постулаты об отталкивании одноимённых зарядов и притягивании разноимённых.

Электрический диполь

Данный термин обозначает элементарную совокупность точечных зарядов, которые имеют системные признаки. Диполем называется сумма зарядов, противозначных, но равных по величине, и сдвинутых один от другого на определённое расстояние.

Диполи бывают разные, но наибольшее внимание физическая наука уделяет точечным диполям. Так называются диполи, которые характеризуются пренебрежимо маленьким расстоянием от отрицательного заряда до положительного

Если в теории совокупность зарядов разделить на множество частей, её можно будет рассматривать как систему электрических диполей.

Электрический дипольный момент

Квантование

Квантование заряда — это принцип, согласно которому заряд любого объекта является целым кратным элементарному заряду. Таким образом, заряд объекта может быть ровно 0  e или точно 1  e , −1  e , 2  e и т. Д., Но не, скажем,12 e или −3,8  e и т. д. (Могут быть исключения из этого утверждения, в зависимости от того, как определяется «объект»; см. ниже.)

Это причина использования термина «элементарный заряд»: он подразумевает, что это неделимая единица заряда.

Расходы меньше, чем элементарный заряд

Есть два известных вида исключений из неделимости элементарного заряда: кварки и квазичастицы .

  • Кварки , впервые представленные в 1960-х годах, имеют квантованный заряд, но этот заряд квантуется в несколько раз.13 е . Однако кварки нельзя рассматривать как изолированные частицы; они существуют только в группах, и все стабильные группы кварков (например, протон , состоящий из трех кварков) имеют заряды, кратные е . По этой причине либо 1  e, либо13 e можно с полным основанием считать « квантом заряда», в зависимости от контекста. Эта соизмеримость зарядов, «квантование зарядов», частично .
  • Квазичастицы — это не частицы как таковые, а скорее возникающая сущность в сложной материальной системе, которая ведет себя как частица. В 1982 году Роберт Лафлин объяснил дробный квантовый эффект Холла , постулировав существование дробно заряженных квазичастиц . Эта теория сейчас широко принята, но это не считается нарушением принципа зарядового квантования, поскольку квазичастицы не являются элементарными частицами .

Что такое квант заряда?

Все известные элементарные частицы , включая кварки, имеют заряды, кратные целому числу13 е . Следовательно, можно сказать, что « квант заряда» равен13 е . В этом случае говорят, что «элементарный заряд» в три раза больше «кванта заряда».

С другой стороны, все изолируемые частицы имеют заряды, кратные е . (Кварки не могут быть изолированы: они существуют только в коллективных состояниях, подобных протонам, которые имеют общие заряды, кратные е .) Следовательно, можно сказать, что «квант заряда» равен е , при условии, что кварки не должны быть включены. В этом случае «элементарный заряд» будет синонимом «кванта заряда».

Фактически используются обе терминологии. По этой причине такие фразы, как «квант заряда» или «неделимая единица заряда», могут быть неоднозначными, если не дано дальнейшее уточнение. С другой стороны, термин «элементарный заряд» недвусмысленен: он относится к количеству заряда, равному заряду протона.

Отсутствие дробных зарядов

Поль Дирак в 1931 году утверждал, что если магнитные монополи существуют, то электрический заряд необходимо квантовать; однако неизвестно, существуют ли на самом деле магнитные монополи. В настоящее время неизвестно, почему изолируемые частицы ограничиваются целыми зарядами; Большая часть теории струн допускает дробные заряды.

Кратные и дольные единицы кулона:

Кратные и дольные единицы образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Кл декакулон даКл daC 10−1 Кл децикулон дКл dC
102 Кл гектокулон гКл hC 10−2 Кл сантикулон сКл cC
103 Кл килокулон кКл kC 10−3 Кл милликулон мКл mC
106 Кл мегакулон МКл MC 10−6 Кл микрокулон мкКл µC
109 Кл гигакулон ГКл GC 10−9 Кл нанокулон нКл nC
1012 Кл теракулон ТКл TC 10−12 Кл пикокулон пКл pC
1015 Кл петакулон ПКл PC 10−15 Кл фемтокулон фКл fC
1018 Кл эксакулон ЭКл EC 10−18 Кл аттокулон аКл aC
1021 Кл зеттакулон ЗКл ZC 10−21 Кл зептокулон зКл zC
1024 Кл иоттакулон ИКл YC 10−24 Кл иоктокулон иКл yC