Расчет сопротивления онлайн по схеме
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
8 причин жить в большом городе, если у вас есть ребёнок
Для соединения вывода элемента схемы с проводом, необходимо кликнуть на выводе элемента левой клавишей, подвести курсор к необходимому месту соединения на проводи и кликнуть левой клавишей второй раз. В базовый набор элементов входят УГО только основных радиодеталей пользователь может создать свои элементы и добавить их.
Компоненты продемонстрируются в 3D в их реальной форме. Диалоговое окно также содержит кнопку удаление, которая позволяет удалить проект. Программа бесплатна, но так же как и в случае с Legrand она отсутствует в свободном доступе.
Удобство его не только в наглядности, но и в том, что интерфейс на русском языке. Выводы можно перемещать вдоль соответствующей стороны.
Прекрасно соответствует имитированию поведенческой реакции разнообразных аналоговых схем, а также импульсных блоков питания. Двойным щелчком вызываем окно параметров батарейки
Бесплатная версия программы не позволяет создавать электронные схемы в коммерческих целях.
Также следует обратить внимание на нетипичное меню, к которому необходимо привыкнуть. Это несомненно отличная программа для обучения, очень проста в использовании
Unique circuit URLs let you easily share your work or ask for help online. Редактор электрических схем рассчитан на совместную работу со средой проектирования FreePCB.
Главное меню
Простейшие элементы включают в себя корпус элемента и выводы элемента ножки, контакты и т. Удобство его не только в наглядности, но и в том, что интерфейс на русском языке. Scheme-it-это онлайн инструмент для черчения принципиальных и структурных схем, электротехнических чертежей, который позволяет не только создавать схемы, но и сохраняя их на сервере давать открытые web-ссылки на ваши схемы. Данный программный комплекс сейчас позиционируется в качестве корпоративного решения, поэтому для рядовых пользователей он будет не интересен, особенно если принять в учет стоимость ПО.
Добавление и редактирование текста элементов схем. Когда схема собрана, нажимаем два раза выключатель и лампочка почему то сгорает.
EveryCircuit 4. Если в схеме присутствуют анимированные элементы, например, светодиодные индикаторы, то их состояние будут корректно отображаться, в зависимости от поступающих сигналов. DcAcLab 3. QElectroTech — программа для составления, просмотра и печати электросхем Язык приложения — английский, но для него имеется русская локализация. В его базе данных уже более 70 готовых диаграмм и более 15 тысяч библиотек PSpice, которые позволяют быстро рисовать диаграммы в веб браузере.
Черчение и рисование электрических схем онлайн
Бесплатные программы
Предоставляются пользователю в безвозмездное использование на постоянной основе. Они работают на соответствующих лицензиях. Поэтому, прежде чем начать использовать графические редакторы, необходимо скачать лицензию. Из популярных можно отметить Freeware, Open Source, GNU GPL, Public domain, Ad-supported и Donationware.
Программа для электросхем
Первая, третья и четвертая программы не ограничены по функционалу и могут быть применены в любое время суток. Вторая частично ограничена по коммерческой составляющей. Пятый сервис функционален и удобен. Шестой предоставляется безвозмездно, но создатель предлагает добровольно пожертвовать средства.
Функции бесплатного сервиса
VISIO
Редактор, которым просто и удобно управлять. Он имеет богатый функциональный набор. Несмотря на то, что приложение создано для показа информации на пк, сделанный документ можно в любое время распечатать для удобства.
VISIO
«Компас Электрик»
Приложение, сконструированное АСКОНом, помогающее проектировать любое электрооборудование и прикладывать к нему кондукторскую документацию. Платное программное обеспечение, но бесплатное на протяжении 2 месяцев.
«Компас Электрик»
ProfilCAD
Автоматизированное ПО, сконструированное для профессиональных электромонтажников и проектировщиков. Приложение помогает создавать электротехнический чертеж, отталкиваясь от плана помещения.
ProfilCAD
QElectroTech
Простой удобный и бесплатный сервис, созданный для формирования практических с электронными схемами-чертежами. Обычный редактор без специальных реализованных функций.
QElectroTech
123D Circuits
Веб-сервис, созданный для формирования проектов. Имеет в себе функции, нацеленные на программирование оборудования, симуляцию и трудовой анализ. Типовой функциональный набор имеет только радио-компоненты с модулями системы ардуино.
123D Circuits
Microsoft Visio
Приложение, отличающееся от других автоматическим и ручным расчетом принципиальной и силовой электрической схемы. Имеет в себе расширительный комплект базовых элементов. Нет возможности создания и редактирования объектов, доступен только их просмотр и распечатка.
Microsoft Visio
KiCad
Комплекс, имеющий открытый код. Система для сквозного конструирования электрических схем. Нацелена на разработку принципиальной схемы.
Вам это будет интересно Ряд автоматических выключателей
KiCad
CadSoft Eagle
Программное обеспечение в виде комплексной среды, где можно создать как принципиальные схемы, так и макеты плат. Работать с ней можно в любом режиме. Приложение платное, но для ознакомления предоставляется бесплатно.
Обратите внимание! Имеет в связи с бесплатным использованием функциональные ограничения. К примеру, работать в редакторе можно с одним файлом
CadSoft Eagle
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения. Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:
В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:
Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:
В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:
Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.
Симулятор – конструктор электронных схем “Начала электроники”
Существует очень интересная программа, которая представляет собой несложный симулятор для демонстрации работы электрических схем и работы измерительных приборов. Удобство его не только в наглядности, но и в том, что интерфейс на русском языке. Она позволяет смоделировать на макетнице очень простые принципиальные схемы. Называется программа “Начала электроники”. Ссылка на нее внизу страницы, видео канала Михаила Майорова.
Программа работает, начиная от Windows 98 и заканчивая Windows 7. Интерфейс выглядит следующим образом.
Внизу располагается чертеж печатной платы, но для нас наибольший интерес представляет панелька с макетной платой. Наверху кнопки управления: загрузить схему из файла, сохранить схему, очистка макетной платы, получить мультиметр, получить осциллограф, показать параметры деталей, состояние деталей, справочник, (кратко изложены понятия об электричестве), небольшой список лабораторных работ для самостоятельного их проведения, инструкция по пользованию симулятором, информация об авторах, выход из программы.
На видео о том, как работает симулятор цепи.
Что можно собрать на симуляторе схем?
На этом простом симуляторе можно собрать много интересных вещей. Для начала давайте смоделируем обычный фонарик. Для этого нам потребуется лампочка, две батарейки и, естественно, все это надо будет соединить перемычками. Ну и какой же фонарик без выключателя и лампочки?
Двойным щелчком вызываем окно параметров батарейки. На появившейся вкладке видим напряжение, внутреннее сопротивление, показывающее ее мощность, миниполярность. В данном случае батарейка вечная.
Когда схема собрана, нажимаем два раза выключатель и лампочка почему то сгорает. Почему? Суммарное напряжение последовательно соединенных батареек 3 вольта. Лампочка по умолчанию была на 2,5 вольта, поэтому и сгорела. Ставим 3-вольтовую лампочку и снова включаем. Лампочка благополучно светится.
Теперь берем вольтметр. Вот у него загораются “ладошки”. Это измерительные щупы. Давайте перенесем щупы к лампочке и поставим измерение постоянного напряжения с пределом 20 Вольт. На мониторе показывает 2,97 вольта. Теперь попробуем измерить силу тока. Для этого берем второй мультиметр. Прибор, подсоединенный в схему, показал почти 50 миллиампер.
Практически как на настоящем мультиметре, можно измерить множество параметров. Есть также в симуляторе осциллограф, у которого даже регулируется яркость луча. Кроме того, есть реостат, можно двигать движок. Есть переменный конденсатор, шунты, нагревательная печка, резисторы, предохранители и другое. К сожалению, в данном симуляторе нет транзисторов. Конструктор электрика отлично подходит для начала изучения основ электроники.
Выводы по программе “Начала электроники”
Для начинающих радиолюбителей это просто замечательная программа, простая и написанная на русском языке, на которой можно научиться многим операциям со схемами, мультиметром и осциллографом. Пригодится она и для разработки оптимальных решений для электрических плат. программу “Начала электроники”
Для продвинутых задач нужны другие программы, которые также есть в интернете. Одна из популярных – Workbench Electronic.
Правильный расчет резистора для светодиода, подбор резистора по цветовой маркировке + онлайн калькулятор
Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:
- Номинальный (рабочий) ток – Iн;
- падение напряжения при номинальном токе – Uн;
- максимальная рассеиваемая мощность – Pmax;
- максимально допустимое обратное напряжение – Uобр.
Самым важным из перечисленных параметров является рабочий ток.
При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.
В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).
Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.
Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.
Закон Ома для цепи переменного тока
В цепи переменного тока сопротивление кроме активной, может иметь как емкостную, так и индуктивную составляющие. Рассмотрим цепь переменного тока, состоящую из резистора сопротивлением R, конденсатора емкостью C и катушки индуктивностью L, соединенных последовательно.
Мгновенные значения силы тока на всех элементах этой цепи одинаковы, а мгновенное значение напряжения между концами цепи равно алгебраической сумме мгновенных значений напряжений на резисторе (UR), конденсаторе (UC) и катушке индуктивности (UL).
Для того чтобы определить амплитудные (или действующие) значения напряжения и силы тока, а также сдвиг фаз между ними удобно использовать метод векторных диаграмм. Здесь действующие значения всех напряжений и токов рассматриваются как векторы, вращающиеся с угловой скоростью ω, равной циклической частоте переменного тока, а их мгновенные значения определяются проекциями этих векторов на горизонтальную ось. Так как сила тока в цепи одинакова, то построение векторной диаграммы начинается с вектора I¯0, модуль которого равен амплитудному значению силы тока в цепи. Направление этого вектора может быть любым. Зададим угол α = ωt к горизонтали.
Колебания напряжения на активном сопротивлении совпадают по фазе с колебаниями силы тока, поэтому вектор U¯0R, модуль которого равен U0R = I0 × R, совпадает по направлению с вектором I¯0. Сдвиг фаз между колебаниями силы тока и колебаниями напряжения на индуктивном сопротивлении составляет π / 2, причем ток отстает по фазе от напряжения. Поэтому вектор U¯0L, модуль которого равен U0L = I0 × ωL, нужно повернуть относительно вектора I¯0 на угол π / 2 против часовой стрелки. Вектор U¯0C, модуль которого равен I0 / ωC, отстает по фазе от вектора I¯0 на π / 2, поэтому его нужно повернуть на этот угол по часовой стрелке.
Для того чтобы найти напряжение на зажимах цепи, необходимо сложить три вектора: U¯0 = U¯0R + U¯0L + U¯0C.
В первую очередь сложим векторы U¯0R и U¯0C. Модуль этой суммы U’0 = . Пусть ωL > 1 / ωC, тогда: U’0 = I0 × (ωL — 1 / ωC).
Теперь сложим векторы U¯0R и U’¯0. Модуль вектора U¯0 определяется по теореме Пифагора: U0² = U0R² + (U0L — U0C)² = I0² × R² + I0² × (ωL — 1 / ωC)². Соответственно амплитудное (действующее) значение силы тока в цепи переменного тока равно отношению амплитудного (действующего) значения напряжения на концах этой цепи к его полному сопротивлению (закон Ома для цепи переменного тока):
I0 = U0 / √(R² + (ωL — 1 / ωC)²) = U0 / Z, где:
- Z — полное сопротивление (импеданс) цепи.
- R — его активное сопротивление.
- ωL — 1 / ωC — реактивное сопротивление цепи переменного тока.
- ω = 2 × π × γ — циклическая, угловая частота. γ — частота переменного тока.
Сдвиг фаз между силой тока и напряжением равен углу φ между векторами U¯0 и I¯0. В соответствии с графиком выше ток отстает от напряжения на угол φ, причем tgφ = (ωL — 1 / ωC) / R.
Для того чтобы определить мгновенные значения напряжений на активном, емкостном и индуктивном сопротивлениях, необходимо спроектировать векторы U¯0R, U¯0L, U¯0C на прямую АВ.
Тогда:
- UR = I0 × R × sin × (ωt + φ).
- UL = I0 × ωL × sin × (ωt + φ + π / 2).
- UC = (I0 / ωС) × sin × (ωt + φ — π / 2).
Если 1 / ωС > ωL, то:
- U’0 = I0 × (1 / ωС — ωL).
- tgφ = (1 / ωC — ωL) / R, причем ток опережает напряжение по фазе на угол φ.
Ток, протекающий в цепи параллельно соединенных резисторах
Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.
Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).
Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны. Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .
Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».
Таким образом, протекающий общий ток в цепи можно определить как:
Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
Таким образом, общий ток будет равен:
I = 0,545 мА + 0,255 мА = 0,8 мА
Это также можно проверить, используя закон Ома:
I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.
9: Spicy schematics
Spicy использует Ngspice для моделирования и является первым приложением, предлагающим синхронизацию файлов между iPad и вашим компьютером PC/ Mac / Linux или Chromebook. Схемы создаются, сохраняются, отображаются локально. Интернет используется только для составления списков и моделирования. Есть надежная и мощная многосерверная система, которая может обрабатывать тысячи одновременных соединений.
Spicy имеет бесплатную веб-версию для браузера Chrome, а также предлагается в качестве первого приложения Facebook для схемотехнического проектирования и моделирования. Программа также предлагает расширенные функции, такие как Онлайн-библиотека схем (функция в приложении), где можно бесплатно загружать модели Spice других пользователей и свои собственные.
TINA-TI на русском
SPICE-симулятор для серьезных разработок, имитации работы и отладки схем для продвинутых радиолюбителей.
Программа позиционируется как SPICE-симулятор с доброжелательным и доступным интерфейсом, не требующим значительных усилий для усвоения навыков работы по проектированию и симуляции электронных устройств. Количество устройств и узлов неограниченно, подходит для масштабных проектов, фишка программы – конструирование аналоговых схем и импульсных источников питания.
В симуляторе 6 категорий устройств: базовые пассивные радиодетали, ключи, полупроводники, измерительные приборы, макромодели сложных устройств и источники. Несколько схем включены в комплект в качестве примеров.
TINA-TI предоставляет хорошие возможности симуляции и анализа. Разработки перед апробированием проверяются на ошибки (ERC) и выводится перечень найденных ошибок схемы. Ошибки выделяются маркерами.
Конструктор работает в английской и русскоязычной версиях.
Закон Ома для переменного тока
При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.В таком случае запись Закона Ома будет иметь вид:
I = U/Z
Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие.Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.
С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:— комплексная амплитуда тока. = Iampe jφ— комплексная амплитуда напряжения. = Uampe jφ— комплексное сопротивление. Импеданс.φ — угол сдвига фаз между током и напряжением.e — константа, основание натурального логарифма.j — мнимая единица.Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.
Для ЭДС
Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной. В противном случае – ЭДС считается отрицательной.
Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E1+E2+…+En, естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E1+E2-E3. При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.
Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r). Приведенная формула закона Ома содержит обозначение r, которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.
Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r, то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной. Закон Ома рассмотрен здесь достаточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.
Полноценную цепь составляет уже участок (участки), а также источник ЭДС. То есть, фактически к существующему резистивному компоненту участка цепи добавляется внутреннее сопротивление источника ЭДС. Поэтому логичным является некоторое изменение выше рассмотренной формулы:
I = U / (R + r)
Конечно, значение внутреннего сопротивления ЭДС в законе Ома для полной электрической цепи можно считать ничтожно малым, правда во многом это значение сопротивления зависит от структуры источника ЭДС. Тем не менее, при расчетах сложных электронных схем, электрических цепей с множеством проводников, наличие дополнительного сопротивления является важным фактором.
Как для участка цепи, так и для полной схемы следует учитывать естественный момент – использование тока постоянной или переменной величины. Если отмеченные выше моменты, характерные для закона Ома, рассматривались с точки зрения использования постоянного тока, соответственно с переменным током всё выглядит несколько иначе.
Платежные программы
Не потому, что им платят, но они лучше, но у них гораздо более мощные функции, они соответствуют стандартам, имеют гораздо больше контента и сочетаний клавиш для облегчения работы по созданию интегральных схем.
Народные инструменты Multisim
Эта программа более известна ветеранам, таким как Workbench или Electronics Workbench, которые изначально называли это программное обеспечение до тех пор, пока они не решили сменить его имя, и оно было переименовано в NI Multisim, которое и поддерживается в настоящее время.
интегрирует моделирование SPICE, которое является отраслевым стандартом, а также поставляется с интерактивной схематической средой для визуализации и анализа поведения электронных схем в режиме реального времени. Он имеет интуитивно понятный графический интерфейс, чтобы сделать его использование проще. Это сокращает количество итераций прототипирования печатных плат и экономит затраты на разработку, добавляя мощные схемы моделирования и анализа в процесс проектирования.
Его цена составляет 685 евро в год для студентов, базовая цена 1926 евро, полная версия 3368 евро и профессиональная версия 4985 евро в год. Поддерживается только как Windows операционная система для использования NI Multisim.
Fritzing
Fritzing делает электронику доступной для всех в качестве креативного материала для всех, поскольку у нее есть сообщество, которое способствует созданию экосистемы креативности, в которой пользователи документируют и делятся своими разработками и предлагают бесплатные курсы электроники, помимо дизайна и профессионального изготовления печатных плат.
AutoCAD Electrical 2020
AutoCAD Electrical 2020 стоит 279 евро в месяц и включена в программное обеспечение AutoCAD. Это считается лучшим программным обеспечением для проектирования схем и является лучшим для всех инженеров-электронщиков, желающих создать свои архитектурные проекты. Если вы потратите время на изучение всех функций, которые у него есть, то лучше всего с уверенностью сделать лучший дизайн.
Для новых пользователей это может быть трудно использовать, и программное обеспечение доступно только для загрузки, оно имеет бесконечные сочетания клавиш, которые требуют времени для изучения. Он имеет 1 месяц бесплатной пробной версии.
SOLIDWORKS Electrical 2020
SOLIDWORKS Electrical отлично подходит для совместной работы, поскольку он имеет встроенные инструменты, чтобы облегчить его. Он идеально подходит для разработки сложных конструкций в короткие сроки и высокого качества. Он имеет превосходный интерфейс для быстрой разработки проектов и способен выполнять очень сложные проекты. Его интеграция с другими программами сложна.
Так много энергии требует компьютера с большим количеством ресурсов. Его цена по запросу, хотя для студентов она стоит € 99 + НДС, и у вас есть возможность запросить бесплатную пробную версию.
Симулятор электронных схем на русском — SPICE-симулятор TINA-TI
Симулятор электронных схем на русском — это обыкновенный SPICE-симулятор под названием TINA-TI с легкой для понимания графической оболочкой. Данная программа работает без всякого лимита на количество применяемых приборов, легко обрабатывает всесторонние работы. Прекрасно соответствует имитированию поведенческой реакции разнообразных аналоговых схем, а также импульсных блоков питания. Используя TINA-TI можно легко сконструировать схему какой угодно степени сложности, соединить раннее созданные фрагменты, исследовать и распознать показатели схемы по качеству.
Все представленные элементы, которыми располагает симулятор электронных схем на русском TINA-TI, рассредоточены распределены на шесть типов: компоненты пассивного действия, ключи переключения, полу-проводниковые приборы, устройства измерения, миниатюрные модели устройств повышенной сложности. Дополнительно данный софт имеет в своем составе множество показательных образцов.
Симулятор электронных схем составлен на русском языке, поэтому с его помощью можно легко освоить черчение и корректировку принципиальных схем. Процесс создания схемы сам по себе не сложный и после завершения этой операции начинается этап симуляции. Программа может выполнять ниже перечисленные виды исследования: оценку постоянного и переменного тока. В данный анализ входит — расчет ключевых напряжений, построение графика конечного итога, определение промежуточных параметров и тестирование температуры.
Далее идет исследование промежуточных процессов, шумовых искажений. Обусловленность от категории исследования, учебная программа формирует окончательный итог в форме графических изображений или таблиц. Прежде чем начать симуляцию, TINA-TI производит проверку схемы на наличие или отсутствие ошибок. Когда обнаруживаются какие либо отклонения, то все изъяны будут показаны в отдельном окошке в форме списка. Если кликнуть мышью на надписи с ошибкой не распознанной симулятором, то деталь или часть чертежа обозначится маркеровочными знаками.
Дополнительно TINA-TI может выполнять измерение различных сигналов и их испытание. Чтобы реализовать данный вид исследования, для этого имеются виртуальные устройства: цифровой мультиметр, осциллограф, контрольно-измерительный прибор сигналов, источник периодических сигналов и устройство записи. Все имеющиеся в программе приборы симуляции предельно возможно соответствуют по использованию фактическим измерительным устройствам. Виртуально подключать их можно в любом участке исследуемой схемы. Все полученные условными приборами информационные данные сохраняются в памяти компьютера.
Tina-TI направлена для функционирования в среде операционных системах Windows 7, Vista, между тем программа эффективно справляется с работой в ОС Linux если использовать виртуальную машины Wine. Определяющим условием должно быть согласованность языка ОС с устанавливаемой программой.
Мощность в цепи переменного тока
Внутри схемы переменного электротока различается три вида мощностей: активного типа или Р, реактивного типа или Q, и полного типа или S. В первом случае стандартной единицей замеров является Ватт (Вт или W), при этом формула для вычисления активных мощностных параметров:
P = U × I × cos φ.
Для замеров мощности реактивного типа применяется специальный вольт-ампер с обозначением «Вар» или Var.
Данной величиной характеризуются нагрузки, которые формируются внутри конструкций электротехнического типа под воздействием колебаний электромагнитных полей в цепях переменного синусоидального тока.
Расчет осуществляется на базе среднеквадратичных показателей напряжения и токовых параметров, умноженных на угловую синусоиду фазного сдвига, согласно значениям:
Q = U × I × sin φ.
В условиях значений на уровне 0/+90° синусовая величина будет положительной, а для показателей в пределах 0/-90° — только отрицательной. Замеры полной электромощности осуществляются исключительно в вольт-амперах (В·А или V·A).
Зависимость мощности от времени для переменного и постоянного тока
Величину, соответствующую произведению стандартного напряжения в зажимной области с показателями электротока периодического типа внутри цепи, целесообразно рассчитывать в соответствии с формулами:
S = U × I или S = √Р 2 + Q 2 , где
- значение Р представлено активной мощностью;
- значение Q 2 — показатель реактивной мощности.
Мощностные показатели электротока переменного типа являются произведением токовых данных на напряжение, при этом уровень будет нулевым в условиях прохождения через нуль, но обязательно максимальным на пиковой амплитуде.
Несмотря на сложность измерения мощности, важно помнить, что такие данные не показательны, поэтому с практической точки зрения интерес представляет активная средняя мощность в определенном периоде
Конструктор однолинейных электрических схем онлайн
РАСЧЕТ НАГРУЗОК | ВЕКТОРНАЯ ДИАГРАММА | ВЫБОР ТРАНСФОРМАТОРОВ | РАСЧЕТ ТОКОВ КЗ ДО 1000 В ВСЕ ОНЛАЙН РАСЧЕТЫ | ПОСМОТРЕТЬ ЭЛЕКТРИКОВ РЯДОМ
Полноэкранный режим недоступен для гостевых пользователейСхема загружается, подождите. Подождите. Инструкция:
- После запуска апплета появится анимированная схема или чистый бланк для создания схемы.
- Зеленый цвет элемента схемы указывает на положительное напряжение.
- Серый цвет элемента схемы показывает заземление.
- Красный цвет элемента указывает на отрицательное напряжение.
- Движущиеся желтые точки показывают относительную силу тока в элементе.
- Для того, чтобы включить или отключить переключатель (ключ) просто кликните на него.
- При наведении мыши на элемент можно увидеть подробное описание его состояния в правом нижнем углу.
- Для изменения параметров элемента следует кликнуть на нем правой кнопкой мыши (или control+click для маков) и выбрать пункт «Правка».
- Меню «Схемы» содержит множество примеров схем, доступных для загрузки.
Измерение мощности ваттметром
Мощность потребления трехфазного тока измеряют, используя ваттметры. Это может быть специальный ваттметр, для 3-х фазной сети, либо однофазный, включенный по определенной схеме. Современные приборы учета электроэнергии часто выполняются по цифровой схемотехнике. Такие конструкции отличаются высокой точностью измерений, большими возможностями оперирования с входными и выходными данными.
Варианты измерений:
- Соединение «звезда» с нулевым проводником и симметричная нагрузка – измерительный прибор подключается к одной из линий, считанные показания умножаются на три.
- Несимметричное потребление тока в соединении «звезда» – три ваттметра в цепи каждой фазы. Показания ваттметров суммируются;
- Любая нагрузка и соединение «треугольник» – два ваттметра, подключенных в цепь любых двух нагрузок. Показания ваттметров также суммируются.
Пример расчёта мощностных показателей
Наиболее простым примером может считаться расчет потребления энергии симметричной нагрузкой. Сколько будет потреблять электроэнергии трехфазный асинхронный двигатель, подключенный в сеть с линейным напряжением 380 В, и потребляющий ток 10 А по каждой фазе? Коэффициент мощности cosϕ=0.76. Тогда потребляемая мощность равна:
Более сложный расчет бытовой сети:
- Фазное напряжение – 220 В;
- Потребление по линиям – 10 А, 5 А, 2 А;
- Первые две фазы подключены к активной нагрузке (электроплита, чайник);
- Третья нагружена на люминесцентные светильники с cosϕ=0,5.
Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc=220∙10+220∙5+220∙2∙0,5=3520 ВА.
Используя онлайн калькулятор расчетов, можно избавиться от большинства ошибок и сократить время вычислений. Требуется лишь правильно ввести данные по текущим параметрам