Все о драйверах для светодиодных светильников

Содержание

Выбор драйвера

Выбор драйвера во многом определяет место, где планируется установка светильника.

Например, в условиях складского помещения для светильника понадобится драйвер с рабочей температурой выше 0◦С и степенью влагостойкости от IP 20

Если освещать будем офис или любое другое административное помещение, где работают люди и нужна высокая освещаемость, то в таком случае надо брать во внимание и коэффициент пульсации: он не должен быть выше 5%. Границы входящего напряжения зависят от конкретных условий. Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети

В этом случае понадобится источник питания с универсальным входом

Например, если в помещении установлено большое количество оборудования или оно достаточно мощное, то есть вероятность падения (скачков) напряжения в сети. В этом случае понадобится источник питания с универсальным входом.

Блоки питания и драйверы для светодиодных светильников

Напряжение в сети офисных помещений обычно стабильно, и стандартного диапазона входных напряжений бывает более чем достаточно. Но в любом случае светодиодный светильник нуждается в корректоре коэффициента мощности, потому что прибавочная мощность оказывается выше порога в 25 Ватт. Есть модели, рассчитанные на внутреннее освещение. Это модели светильников PLD-40 и PLD-60. Их коэффициент пульсации не выше 20%, а значит, они подойдут для освещения помещений, не требовательных к яркому освещению. Драйверы таких моделей защищены от короткого замыкания и перегревов, а также имеют полное соответствие требованиям электромагнитной совместимости. Таким образом, примеры моделей PLD-40 и PLD-60 продемонстрировали нам прекрасное соответствие для стандартных светильников без регулировки освещения.

Блок питания PLD-60-1050B для внутреннего светодиодного освещения

Требования к драйверам в зависимости от назначения светильника:

Если светильник устанавливается для наружного освещения, то главное требование для его драйвера – это широкий диапазон переносимых температур, гарантирующих исправную работу после длительного нахождения на морозе.

Герметичный контроллер с драйвером светодиодного светильника

Блок питания (кроме того, что он должен быть защищен указанным способом) должен обладать широким диапазоном входного напряжения ввиду того, что линии питания весьма нестабильны. Он должен быть надежно защищен от перепадов напряжения.

Если светильник устанавливается для освещения дорог, железной дороги, метро, то драйвер у такого светильника должен обладать виброустойчивостью. Этому способствует компаунд, который залит в блоки питания, что позволяет ему не воспринимать вибрации. В противном случае элементы просто отвалятся от платы при первой же вибрационной атаке.

От качества выполнения деталей драйвера зависят все параметры и возможности светильника. Среди них и такие важные, как уровень пульсации, диапазон рабочих температур, устойчивость к скачкам напряжения, температурный диапазон

Вот почему так важно качество комплектующих этого прибора. Как известно, светодиодный светильник led сам по себе является очень надежным осветительным прибором, отличающимся долговечностью. Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах

Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт

Однако он не сможет пройти весь срок своей службы, если не подойти должным образом к выбору драйвера в светодиодных лампах. Ведь основная причина выхода из строя светильника — не перегоревший светодиод, а плохой драйвер. Именно из-за него вам придется носить светильник на ремонт.

Классическая схема драйвера

Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

Схема такого механизма составлена из трех основных каскадных областей:

  1. Разделитель напряжения на емкостном сопротивлении.
  2. Выпрямитель.
  3. Стабилизаторы напряжения.

Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным.

Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

Принцип работы устройства

Основная работа драйвера – создание на выходе заданного значения тока и его поддержание. Любая схема подобного типа состоит из нескольких частей:

  • сетевого фильтра, защищающего сеть от помех;
  • конденсаторно-резисторного (RC) или трансформаторного узла для снижения напряжения;
  • диодного моста для выпрямления;
  • стабилизатора тока.

Устройство с RC фильтром действует так:

  1. Конденсатор в сети переменного тока выполняет функции емкостного сопротивления. Вместе с мостом он образует делитель напряжения и уменьшает его до нужного предела. Резистор в его цепи служит для самозарядки.
  2. Сниженное напряжение поступает на стабилизатор тока, а с него – на светодиоды.

Трансформаторный узел представляет собой устройство ключевого или другого типа, управляемое генератором. Он может быть выполнен на специализированных микросхемах, высоковольтных ключевых транзисторах, простых элементах или на ШИМ контроллере.

Такой драйвер работает следующим образом:

  • при подаче питания мост выпрямляет его, и оно идет на ключи, на которых с помощью обмоток создаются противофазные напряжения;
  • одновременно с ними включается генератор, который вырабатывает импульсы и запускает драйвер;
  • ключи, включаясь попеременно, обеспечивают бесперебойную работу устройства через цепь обратной связи;
  • на выходной обмотке возникает переменное напряжение, выпрямляемое мостом или 1-2 диодами вместе с электролитическими конденсаторами;
  • далее в цепи стоит стабилизатор тока, к которому подключают светодиоды.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибора Напряжение, В
Красный 1,63–2,03
Желтый 2,1–2,18
Зеленый 1,9–4,0
Синий 2,48–3,7
Оранжевый 2,03–2,1
Инфракрасный до 1,9
Фиолетовый 2,76–4
Белый 3,5
Ультрафиолетовый 3,1–4,4

Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме. В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Технические характеристики

При покупке светодиодного светильника может возникнуть потребность в покупке драйвера, если осветительное устройство не имеет преобразователя тока.

Основные характеристики:

  • ток на выходе, А;
  • рабочая мощность, Вт;
  • напряжение на выходе, В.

Выходное напряжение может меняться. Оно зависит от схемы подключения к питанию и числа светодиодов. От величины тока зависит уровень яркости и мощность.

Чтобы диоды светили ярко и не притухали, на выходе драйвера ток поддерживается на заданном уровне. Мощность преобразователя должна быть несколько выше, чем суммарное количество Вт всех диодов.

Для расчета мощности драйвера применяют формулу: P = P (led) × X где:

  • P (led) – это мощность одного светодиода;
  • Х – количество диодов.

Если расчетная мощность получилась 10 Вт, драйвер надо брать с запасом на 20-30 %.

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют.  LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются  самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие  работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Какими бывают драйверы для светодиодов по типу устройства

Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

КПД светодиодных драйверов достигает 95%

Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Зачем драйвер светодиодным лампам?

Светодиоды, по сравнению с лампами накаливания, гораздо энергоэффективнее и долговечнее. Они могут работать годами и потребляют в разы меньше электроэнергии, чем обычные лампочки, при стабильном электропитании, за которое и отвечает драйвер.

Светодиоды очень чувствительны к питанию, поступающему на их входы. Пониженных значений они не боятся, а вот повышенные напряжения и токи могут не только существенно убавить ресурс полупроводников, но и вывести их из строя. Задача драйвера – обеспечение светодиодов стабильным током.

Драйвер для светодиодных ламп – источник питания. Он представляет собой электронную схему, на выходе которой оказывается постоянный ток заданной величины.

Светодиодные драйверы, предлагаемые производителями, рассчитаны на напряжения 10, 12, 24, 220 В и постоянные токи 350 мА, 700 мА, 1 А. Обычно драйверы делают под конкретные светильники, но есть в продаже и универсальные приборы, которые подходят к большинству LED-элементов от известных брендов.

Стабилизаторы тока используются в:

  • системах уличного и домашнего освещения;
  • настольных офисных светильниках;
  • светодиодных лентах и декоративной подсветке.

С помощью драйверов изменяют величину яркости и цвет светодиодов. Это делается с помощью регуляторов или пульта дистанционного управления. Светодиодная лампа без драйвера работает нестабильно и рискует быстро выйти из строя.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью диммера или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип  устройства Технические характеристики Плюсы Минусы Сфера применения

Линейный

Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики

Импульсный

Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

Конструктивная схема: особенности устройства

По внешнему виду лед-лампочки похожи на источники света всех других видов, выпускаются с различными цоколями в форме шара, свечки, груши.

Светодиоды, предназначенные для ламп, тоже разные:

  • обычные на пластиковом корпусе (мощные «кукурузы»);
  • бескорпусные;
  • диодные СОВ-сборки;
  • нити на сапфировой, стеклянной или металлической полосе (filament);
  • диоды на прозрачной керамике (Crystal Ceramic MCOB).

Доступны светодиодные источники, поддерживающие выключатель с индикацией и диммирование.

Конструктивное устройство светодиодных ламп на 220в:

  • корпус;
  • отражатель;
  • рассеиватель света;
  • блок питания (печатная плата с напаянными радиоэлементами).

По конструкции отличаются филаментные лампочки. В них нет платы, ее заменяют стержни, драйвер так же в цоколе. Стержень – это трубка из сапфира или стекла с сечением 2 мм и длиной около 3 см. На стержне расположены миниатюрные светодиоды.

Область применения светодиодных светильников ASD

ASD светодиодные лампы достаточно универсальны и многофункциональны, за счет чего могут использоваться для решения разных задач:

Освещение потолка. Декоративная подсветка и полноценное верхнее освещение.

Подсветка комнаты. Спальни, гостиные, прихожие, другие помещения

Важно лишь правильно рассчитать необходимое количество, мощность и расположение. Кухня

Подсветка потолков, отдельных элементов, рабочих поверхностей и мебели

Кухня. Подсветка потолков, отдельных элементов, рабочих поверхностей и мебели.

Промышленное освещение

Предприятия, автостоянки, торговые и общественные объекты.

Заключение

Светодиодные лампы быстро заняли свою нишу в сфере организации освещения любого типа.

Несмотря на то что компания ASD производит качественную и разнообразную продукцию светодиодного освещения, у компании есть основные конкуренты, которые также имеют свои преимущества, например такие как CREE или Ecola.

Многообразие конструкций, характеристик, форм и размеров позволяет добиться любого результата, подобрать оптимальный уровень освещенности и подчеркнуть особенности оформления помещения.

Самостоятельная сборка преобразователя для светодиодов 220 В

Рассмотренная схема напоминает блок питания импульсного типа. Для примера возьмем простой блок питания импульсного типа, не имеющий гальванической развязки. Главные преимущества подобной схемы — простота и надежность.

При выборе метода действуйте осторожно, поскольку отсутствуют какие-либо ограничения по выходному току. Светодиоды будут питаться от положенных им 1,5 – 2 А, но если по неосторожности коснуться руками оголенных проводов, значение тока вырастет до десятков ампер и произойдет сильный удар. Простейшая схема преобразователя тока на 220 В содержит три каскада:

Простейшая схема преобразователя тока на 220 В содержит три каскада:

  • делитель напряжения с емкостным резистором;
  • несколько диодов (мост);
  • стабилизатор напряжения.

В первом каскаде емкостной резистор используется для самостоятельной подзарядки конденсатора, не имеет отношения к работе самой схемы. Номинал не имеет значения и обычно составляет от 100 кОм до 1 МОм при мощности не более 1 Вт. В этих целях нельзя выбирать электролитический конденсатор.

Ток через конденсатор проходит до тех пор, пока он полностью не зарядится. Чем ниже емкость конденсатора, тем быстрее завершится процесс. Конденсатор на 0,3 мкФ пропустит через себя меньшую часть от общего напряжения сети.

Диодный мост используется для трансформации переменного напряжения в постоянное. После того как конденсатор «отсечет» практически весь вольтаж, диодный мост выдаст постоянный ток с напряжением 20 – 22 В.

На третьем каскаде устанавливают сглаживающий фильтр для стабилизации напряжения. Конденсатор и диодный мост уменьшают напряжение. Любые изменения напряжения в сети сказываются на выходной амплитуде диодного моста. Для уменьшения пульсации параллельно в схему подключают электролитический конденсатор.

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение — до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

Стоимость микросхем — около 60 руб/шт.

Типовая схема включения (без диммирования) выглядит так:

Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED)

Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

fosc = 25 / (Rosc + 22), где Rosc — сопротивление в килоомах (обычно от 75 до 1000 кОм).

Резистор включается между 8-ой ногой микросхемы и «землей» (или выводом GATE).

Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

Пример расчета

Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

Rosc = 25/fosc — 22 = 25/0.24 — 22 = 82 кОм

Идем дальше. Номинальный ток светодиодов — 3А, рабочее напряжение — 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

L ≥ (VIN — VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

Осталось рассчитать Rsense:

Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

В качестве мощного выходного MOSFET’а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

И вот, собственно, какая схема у нас получилась:

Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема — это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

В статье были использованы следующие радиодетали:

Светодиоды
Cree XM-L T6 (10Вт, 3А) 135 руб/шт.
Cree XM-L2 T6 (10Вт, 3А, медь) 360 руб/шт.
Транзисторы
40N06 11 руб/шт.
IRF7413 14 руб/шт.
IPD090N03L 14 руб/шт.
IRF7201 17 руб/шт.
50N06 12 руб/шт.
Диоды Шоттки
STPS2H100A (2А, 100В) 15 руб/шт.
SS34 (3А, 40В) 90 коп/шт.
SS56 (5А, 60В) 3.5 руб/шт.

Где купить драйверы для светодиодов

Стоимость драйвера может достигать 300 рублей и выше

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов

Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети

Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
10W 21-40V 0.3A AR111 21/30 0,3 10 338
12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

Борьба с высокими пусковыми токами

Постоянно обсуждаемая в специализированных интернет-форумах тема срабатывания защитных автоматов при замене светильников с традиционными источниками света на светодиодные уже привлекла внимание производители электроники. За рубежом на рынке появились всевозможные устройства, способные, по утверждению их производителей, ограничить пусковые токи. Обычно принцип работы таких устройств сводится к тому, что на время пуска последовательно со светильником включается резистор, который уменьшает пусковой ток

В результате сглаживающий конденсатор в драйвере заряжается медленнее и время пуска увеличивается, но это практически незаметно для пользователей. Недостатком является то, что такие ограничители тока совместимы далеко не со всеми драйверами

Обычно принцип работы таких устройств сводится к тому, что на время пуска последовательно со светильником включается резистор, который уменьшает пусковой ток. В результате сглаживающий конденсатор в драйвере заряжается медленнее и время пуска увеличивается, но это практически незаметно для пользователей. Недостатком является то, что такие ограничители тока совместимы далеко не со всеми драйверами.

Другой способ, который, по мнению автора статьи, является более перспективным — использование драйверов с небольшой задержкой пуска, время которой в партии различается от экземпляра к экземпляру. Время задержки для каждого драйвера при их производстве устанавливается случайным образом, либо по определенной закономерности. В результате одновременный пуск двух и более драйверов маловероятен или вообще исключается. Добавление такой функции незначительно увеличивает стоимость драйвера, но за счет экономии на монтажных работах прибавка в цене многократно окупается.

Драйверы для светодиодов: где купить и сколько стоят

Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже:

Модель Технические параметры Цена, руб.

DC12V

  • Мощность: 18 Вт
  • Выходное напряжение: 12 В
  • Входное напряжение: 100÷240 В
190
драйвер DC12V

LB0138

  • Мощность: 6 Вт,
  • Выходное напряжение: 45 В
  • Входное напряжение: 220 В
160
драйвер LB0138

YW-83590

  • Мощность: 21 Вт
  • Выходное напряжение: 25÷35 В
  • Входное напряжение: 200÷240 В
680
драйвер YW-83590

LB009

  • Мощность: 150 Вт
  • Входное напряжение 170÷260 В
  • Выходное напряжение: 12 В
730
драйвер LB009

Микросхема PT4115 стоит от 40 до 150 рублей за штуку. Стоимость более мощных элементов колеблется от 100 рублей до нескольких тысяч.