Смещение при помощи тока
В усилителях могут снижаться синфазные импульсы, если заменить резистор на источник питания. При этом текущее значение сопротивления будет возрастать, а эффект повышения сигналов существенно ослабится. Представим себе дифференциальный усилитель постоянного тока, на входе которого будут действовать синфазные импульсы. Источники энергии в эмиттерных цепях будут поддерживать напряжение, распределяя его между коллекторными цепями равномерно.
Нужно помнить о необходимости предусматривать цепи смещения постоянного тока. Если использовать конденсаторы для межкаскадной связи на входе, то должны быть активированы базовые заземленные резисторы. К таким дифференциальным усилителям относится одно предостережение. На переходе база-эмиттер не более 6 В биполярные транзисторы могут выдерживать обратное смещение. После этого может наступить пробой.
Если подается большее входное дифференциальное напряжение, то входной каскад будет разрушаться. Разрушение схемы предотвращается благодаря ограничению тока пробоя эмиттерным резистором, но качества транзисторов при этом могут понижаться. Если обратная проходимость будет возникать, снижение входного импеданса будет существенным в любом случае.
Изменение коэффициента усиления – инвертирующий усилитель
Как следует из названия, операционные усилители являются усилителями. Они могут усиливать сигналы с определенным отношением входного сигнала к выходному. Это отношение обычно называется коэффициентом усиления операционного усилителя. В идеальном мире коэффициент усиления операционного усилителя был бы бесконечно высоким – настолько высоким, что он мог бы усилить любой уровень сигнала до любого другого уровня сигнала. В реальном мире это не так, но мы будем считать это фактом, пока анализируем следующую схему: инвертирующий усилитель.
Рисунок 2 – Инвертирующий усилитель
Давайте шаг за шагом проведем эту работу. Во-первых, давайте применим наши два правила для операционных усилителей, чтобы определить некоторые узловые напряжения в этой схеме. Простейшим из них является виртуальное короткое замыкание, где V+ и V- всегда находятся на одинаковом напряжении. Мы видим, что V+ привязан к земле; следовательно, V- также должен быть на земле. Как насчет тока, поступающего в узел и выходящего из узла V-? По закону токов Кирхгофа мы знаем, что сумма всех токов в этом узле должна быть следующей:
\
Поначалу это выглядит так, что для решения могут потребоваться некоторые усилия, так как это уравнение содержит три неизвестных. Но так ли это? Если вы вспомните правила для операционных усилителей, изложенные ранее, вы увидите, что это уравнение простое: входы операционного усилителя не потребляют ток! Поэтому мы знаем, что iV- равен нулю. Затем мы можем привести это уравнение к следующему виду:
\
Поскольку V- привязан к земле виртуальным коротким замыканием, закон Ома позволяет нам заменить эти токи на напряжения и сопротивления:
\
Что при небольшой помощи алгебры возвращает нас туда, где мы начали:
\
Понятно, почему эта схема полезна – она позволяет применять линейный коэффициент усиления к входу и выходу, выбирая (Roc/Rвх), чтобы сформировать любое соотношение, которое вы захотите. У схемы также есть дополнительный бонус, позволяющий вам в значительной мере контролировать ее входной импеданс – так как вы можете выбрать значение резистора Rвх, вы можете сделать его таким большим или маленьким, чтобы соответствовать любому выходному импедансу, с которым вам нужно достичь согласованности!
Зачем нужна резисторная цепь для достижения такого поведения? Чтобы понять это, нам нужно понять немного больше о том, как работает операционный усилитель. Операционный усилитель – это тип усилителя по напряжению. В идеальном случае операционный усилитель обеспечивает бесконечный коэффициент усиления – он может усиливать любое напряжение до любого другого уровня напряжения. Мы можем масштабировать бесконечный коэффициент усиления операционного усилителя, используя резисторную цепь, которая соединяет входной узел, V-, и выходной узел. Подключив выход операционного усилителя к входу, мы используем процесс под названием обратная связь для регулировки выходного напряжения до желаемого уровня. Обратная связь – действительно важная концепция электронной техники и достаточно сложная, чтобы потребовать целую статью, посвященную этой теме. На данный момент достаточно понять базовый принцип, который применим к операционным усилителям: путем подключения выхода к входу вы можете изменить поведение схемы действительно полезными способами.
Чертеж транслятора
Усилительное устройство, созданное на базе вышеуказанной картины, относится к числу разграниченного оборудования, предназначенных для повышения амплитуды 2-х толчков на вводе. Элементарная диаграмма похожего прибора показана здесь:
Диаграмма усилительного устройства.
Микрорезисторы R1 = R7 и R2 = R8 обеспечивают постановку задач величины действия приемников, а R4’, R4’’ и R5 для того, чтобы сбалансировать мостовой элемент. Оптимальная работоспособность диаграммы образуется за счет выдерживания равномерных параметров мостика.
На финишном этапе, когда нет входящего толчка на Вх.1 и Вх.2, установленное сосредоточение на выходном конце станет приравниваться к 0-му показателю, в независимости от динамики колебания питательного ингредиента электрической сети.
Дифференциальный усилитель с несимметричным выходом.
Схема с несимметричным выходом применяется, как правило, для согласования дифференциального усилителя с каскадами, выполненными
на одиночных транзисторах. При этом резистор в цепи транзистора, не связанного с выходом усилителя, в общем случае может отсутствовать.
Если к дифференциальному усилителю необходимо подключить каскад с несимметричным выходом, напряжение неиспользуемого входа, как
правило, фиксирует на неизменном уровне. Для этой цели может быть использован дополнительный делитель напряжения.
1.С дифференциальным входным сигналом.
Такая схема приведена на рис.9, где выходной сигнал берется с коллектора VT1. В коллекторе VT2 резистора R2 может и не быть. Тогда
входное сопротивление VT1 равно:
Rт нес = RкRн/(Rк + Rн).
При Rн ≤ 10 кОм основные зависимости будут следующие:
Кu диф нес ≈ 0,5h21к·Rк·Rн/h11э(Rк + Rн) = 0,5SRт нес,
Rвх диф нес = 2h11э,
Rвых диф нес = Rк.
2.С синфазным входным сигналом.
Для такого вида включения показана схема на рис.10. В этом случае входное сопротивление VT1 такое же, как и при дифференциальном
входе:
Rт нес = RкRн/(Rк + Rн).
При Rн ≤ 10 кОм выполняются следующие основные зависимости:
Ku сф нес = SRн/(1 + 2SRэ) ≈ Rн/2Rэ,
Rвх сф нес = 0,5h11э(1 + 2SRэ),
Rвых сф нес = Rк,
КОСС ≈ 1 + 2SRэ.
Теперь, зная, как работает дифференциальный усилитель, рассмотрим случай , когда на ДУ подается полезный и синфазный (помеха)
сигналы (рис.11).
В этом примере входной импульс имеет только положительную амплитуду. Чтобы подавить помеху, необходимо однофазный входной сигнал
преобразовать в дифференциальный. Для этого его инвертируют и подают вместе с не измененным входным сигналом на диффенциальные входы ДУ. Одновременно на
вход будет действовать наведенный через входные цепи синфазный сигнал помехи, который складывается с полезным сигналом. ДУ вычитает уже
разнофазные импульсы помехи, а полезный сигнал снимается с положительного несимметричного выхода.
Cледующая >> |
Всего один биполярный транзистор
Самая простая схема для буферизации выходного тока операционного усилителя выглядит так:
Рисунок 1 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе
А вот соответствующая схема LTspice:
Рисунок 2 – Схема для буферизации выходного тока операционного усилителя на биполярном транзисторе в LTspice
Давайте получим четкое понимание идеи этой схемы, прежде чем двигаться дальше. Входной сигнал подается на неинвертирующий вход операционного усилителя, а выход ОУ подключается непосредственно к базе биполярного транзистора. Операционный усилитель и биполярный транзистор могут использовать один и тот же положительный источник питания, но в этом случае мы предполагаем, что доступны два напряжения – источник питания 5 В для маломощных, малошумящих схем и 12 В для мощной части проекта. Значение резистора нагрузки очень низкое, поэтому выходные напряжения более 200 мВ, приложенные непосредственно к нагрузке, потребуют большего выходного тока, чем может обеспечить LT6203. Транзистор, выбранный в схеме LTspice, может работать с токами около 1000 мА, что означает, что он подходит для напряжений на нагрузке до 5 В.
Ключевым моментом этой схемы является соединение обратной связи. Помните «виртуальное короткое замыкание»: при анализе операционного усилителя в схеме с отрицательной обратной связью мы можем предположить, что напряжение на неинвертирующем входе равно напряжению на инвертирующем входе. Уже одно это говорит нам о том, что выходное напряжение (то есть напряжение на нагрузке) будет равно входному напряжению. Но давайте пойдем немного глубже, чтобы убедиться, что мы действительно понимаем, что происходит; виртуальное короткое замыкание – это своего рода суеверие, которое может отвлечь нас от реальной работы операционного усилителя. Операционный усилитель умножает дифференциальное входное напряжение на очень большой коэффициент усиления. Таким образом, с отрицательной обратной связью операционный усилитель быстро достигает равновесия, потому что большие изменения выходного напряжения уменьшают дифференциальное напряжение, которое вызывает эти самые выходные изменения. В этом состоянии равновесия выход стабилизируется при любом напряжении, что устраняет разницу между напряжениями на инвертирующем и неинвертирующем входах – иными словами, операционный усилитель автоматически регулирует свой выходной сигнал любым способом, необходимым для того, чтобы Vвх– было равно Vвх+.
В контексте этой схемы буферизации выходного сигнала операционный усилитель автоматически генерирует любое выходное напряжение, необходимое для того, чтобы сделать напряжение эмиттера биполярного транзистора равным входному напряжению. Подумайте, насколько сложно это было бы в ситуации разомкнутой петли – каким-то образом необходимо было бы рассчитать соотношение между входным и выходным сигналами усилителя, чтобы компенсировать падение напряжения база-эмиттер биполярного транзистора, которое не является ни линейным, ни предсказуемым. Но с операционным усилителем и некоторой отрицательной связью проблема становится тривиальной.
Давайте подкрепим это понимание идеи парой симуляций. Первая не очень захватывающая; она просто подтверждает, что выходное напряжение следует за входным напряжением (график входного напряжения Vin скрыт под графиком выходного напряжения Vout):
Рисунок 3 – График входного и выходного напряжений схемы
На следующем графике показано, что должно быть на выходном выводе операционного усилителя, чтобы обеспечить нужное напряжение на нагрузке.
Рисунок 4 – График входного напряжения схемы, выходного напряжения операционного усилителя и выходного напряжения схемы
Дифференциальная сигнализация высокого напряжения
В высоковольтной дифференциальной сигнализации (HVD) используются сигналы высокого напряжения . В компьютерной электронике «высокое напряжение» обычно означает 5 вольт или более.
Варианты SCSI-1 включали реализацию высоковольтного дифференциала (HVD), максимальная длина кабеля которой во много раз превышала длину несимметричного варианта. Оборудование SCSI, например, допускает максимальную общую длину кабеля 25 метров с использованием HVD, в то время как несимметричный SCSI допускает максимальную длину кабеля от 1,5 до 6 метров, в зависимости от скорости шины. Версии LVD SCSI допускают длину кабеля менее 25 м не из-за более низкого напряжения, а потому, что эти стандарты SCSI допускают гораздо более высокие скорости, чем более старые HVD SCSI.
Общий термин высоковольтная дифференциальная сигнализация описывает множество систем. С другой стороны, низковольтная дифференциальная сигнализация ( LVDS ) — это особая система, определенная стандартом TIA / EIA.
Улучшение параметров дифференциального усилителя
Основными недостатками вышеописанной схемы дифференциального усилителя являются низкое сопротивление и возникновение трудности изменить коэффициент усиления, так как соотношение сопротивлений должно быть достаточно точно согласовано.
Первый недостаток связан с тем, что входным сопротивлением дифференциального усилителя являются по сути сопротивления резисторов R1 и R2, которые имеют величину от единиц до десятков кОм. При увеличении величин этих сопротивлений приходится увеличивать сопротивления R3 и R4, что приводит к уменьшению полосы пропускания усилителя и появлению дополнительных шумов. Решением данной проблемы является изолирование и развязка входов дифференциального усилителя при помощи двух повторителей напряжения по схеме неивертирующего усилителя. Схема такого дифференциального усилителя представлена ниже
Схема увеличения входного сопротивления дифференциального усилителя на ОУ.
Схема состоит из двух операционных усилителей включённых по схеме повторителя напряжения, входное сопротивление которых очень велико (десятки-сотни МОм), поэтому сопротивление источника сигнала практически не влияет на входное напряжение. На нагрузке RH итоговое напряжение будет зависеть от разности входных напряжений
Особенностью данной схемы является то, что она имеет дифференциальный выход, то есть сопротивление нагрузки подключается только к выходам операционных усилителей DA1 и DA2
Для решения, проблемы упрощения регулирования коэффициента усиления дифференциального усилителя, может быть применена схема состоящая, как и предыдущая из двух повторителей напряжения с включением на дифференциальном выходе, параллельно сопротивлению нагрузки, дополнительно трёх последовательных резисторов. Данная схема изображена ниже
Схема дифференциального усилителя, позволяющая регулировать коэффициент усиления одним резистором.
Данная схема состоит из двух ОУ DA1 и DA2, включённых по схеме повторителя напряжения и резисторов R1, R2 и R3, причём R1 = R3 = R.
Работа данной схемы объясняется следующим образом. В соответствии с принципом виртуального замыкания, напряжение между инвертирующим и неинвертирующим входом ОУ равно нулю, поэтому на резисторе R2 напряжение будет равно разности между напряжениями UBX1 и UBX1.
Тогда ток, протекающий через резистор R2, составит
Так как резисторы R1, R2 и R3 включены последовательно, то такой же ток протекает и через резисторы R1 и R3. Тогда, с учётом того что R1 = R3 = R, выходное напряжение на сопротивлении нагрузки составит
Легко заметить, что выходное напряжение зависит от отношения сопротивлений R1, R2 и R3, поэтому изменяя величину сопротивления резистора R2 можно изменять величину выходного напряжения, а, следовательно, и коэффициент усиления схемы. Приняв отношение сопротивлений R и R2, за некоторый коэффициент пропорциональности можно несколько упростить выражение для выходного напряжения
Вышеописанные дифференциальные усилители имеют один недостаток: работа усилителя возможна только на незаземлённую (плавающую) нагрузку, то есть нагрузка не должна быть соединена с землёй. Для устранения данного недостатка необходимо на выход схемы добавить усилитель с дифференциальным входом и несимметричным выходом. Таким усилителем является простейший дифференциальный усилитель, рассмотренный вначале статьи. Получившаяся схема носит название измерительного или инструментального усилителя.
Что такое дифференциальный усилитель
Дифференциальный усилитель — это электронное снаряжение, имеющее 2 входящих компонента, сигнальный толчок на выходном конце, учитывающий разницу указателя напряжения на входной детали, умноженного на константную величину. Используется в вариантах, если требуется показать маленькую разницу показателя в зоне существенного диамагнитного компонента.
Сигнал на выходном конце такого агрегата бывает с 1 фазой и различительной. Это устанавливается схемой каскадного начала на выходе.
Транзисторные детали машины бывают:
- биполярными;
- полевыми;
- баллистическими.
Самые высокочастотные усилители идут на интегральной паре с баллистическими транзисторными элементами.
Устройство операционного усилителя
Итак, операционный усилитель – это усилитель электрических сигналов, чаще всего постоянного тока, с высоким коэффициентом усиления в широкой полосе частот, предназначенный для выполнения различных математических операций над аналоговыми величинами при работе в схеме с отрицательной обратной связью.
Операционные усилители в настоящее время выпускаются различного назначения и для выполнения различных функций и хотя электрическая схема усилителей даже одного класса может различаться, но структурная схема, которая лежит в основе всех операционных усилителей остается единой. Изображение структурной схемы выполнено ниже
.
Структурная схема операционного усилителя
Таким образом, операционный усилитель представляет собой схему из последовательно соединённых трёх частей: входной усилитель на основе дифференциального каскада (иногда может быть несколько дифференциальных каскадов), каскад согласования уровней и выходной каскад.
Дифференциальный входной каскад, имея большой коэффициент усиления и большое входное сопротивление, обеспечивает согласование операционного усилителя с источником сигнала. Довольно часто усиления одного входного каскада недостаточно, поэтому используется несколько дифференциальных усилителей на входе соединённых последовательно с симметричными входами и несимметричным выходом.
Каскад согласования уровней предназначен для согласования уровней напряжения между входным и выходным каскадами операционного усилителя. Кроме того данный каскад выполняет функцию усиления напряжения переменного тока и меет небольшое выходное сопротивление.
Выходной каскад операционного усилителя, обычно, не усиливает напряжение, но позволяет отдавать в нагрузку усилителя максимальное напряжение и ток, имеет небольшое выходное сопротивление, а мощность выделяемая на нём в случае отсутствия сигнала минимальна.
На изображении ниже показана принципиальная электрическая схема одного из первых операционных усилителей, выполненных по интегральной технологии, который разработал в 1963г. Роберт Видлар, инженер Fairchild Semiconductor
Электрическая принципиальная схема операционного усилителя μА702 (отечественный аналог К140УД1).
Данная схема содержит 9 транзисторов, 12 резисторов и 1 интегральный диод, в схеме отсутствуют конденсаторы, что даёт достаточно широкую полосу пропускания. В качестве входного усилителя используется дифференциальный каскад на транзисторах VT1VT2 с генератором стабильного тока на транзисторах VT3VT6. Дифференциальный каскад на транзисторах VT4VT5 совместно с транзисторами VT7VT8 выполняют роль каскада согласования уровней, а транзистор VT9 используется в качестве выходного каскада с небольшим выходным сопротивлением.
На принципиальных электрических схемах операционные усилители в интегральном исполнении обозначаются следующим образом
Обозначение операционных усилителей на принципиальных электрических схемах (слева иностранное, а справа отечественное изображение).
Дифференциальный вход
Микросхема представляет собой стробируемый операционный усилитель ( ОУ) с дифференциальным входом и дифференциальным выходом и предназначена для построения экономичных устройств выборки и хранения аналоговых сигналов с малыми динамическими ошибками. Может, использоваться как высококачественный ОУ или повторитель, упрощенный инструмента-льый усилитель для реализации каналов модуляция-демодуляция прецизионных ОУ с автостабилизацией нулевого уровня, для построения помехоустойчивых предусилителей в виброметрии и геоакустике при работе от незаземленных пьезодатчиков. Управление осуществляется от ТТЛ логики: выборке соответствует уровень лог.
Наиболее простой, надежной и, по-видимому, наиболее перспективной является схема с дифференциальным входом без преобразования сигнала. Она обладает высокой помехозащищенностью по цепи питания и малым временем затухания переходного процесса после перегрузки.
Серийно выпускаются цифровые измерители отношений двух сигналов ( входного и опорного) с дифференциальными входами, построенные на принципе двойного интегрирования и выводящие информацию на жидкокристаллический дисплей.
На рис. 6.16, б, в приведены схемы гиратора на операционных усилителях с дифференциальным входом.
Принципиальная электрическая схема дискретных резисторов блока УТ. |
Блок УМ1 содержит следующие каскады: предварительного усиления по напряжению ( на микросхеме DA1 с дифференциальным входом); согласующий ( на транзисторе VT1); драйверный ( на транзисторе VT4 по схеме с ОЭ); двухтактный ( на транзисторах VT8, VT9, VT12, VT13), усиливающий по мощности сигнал драйверного каскада.
Интегральные ОУ в схемотехническом отношении обычно строят по схеме усилителя с непосредственной связью между каскадами и дифференциальным входом.
При выборе структуры высокочастотного тракта ОУ следует также помнить, что введение параллельных высокочастотных каналов затрудняет реализацию дифференциального входа, поэтому в дифференциальных усилителях они обычно не применяются.
Вольтметр заменен измерительной системой общего вида, поскольку проводимый здесь анализ остается справедливым для любой системы с дифференциальным входом. Измерительная система может включать в себя коммутатор, дифференциальный усилитель и аналого-цифровой преобразователь.
Многоконтурное устройство со сглаживанием импульсных потоков. |
Множетво из / таких уравнений для всех / — — / ИУМ, где I — число ОУ с дифференциальным входом, составляют систему. В зависимости от способа коммутации цепей обратной связи эта система может быть решена относительно любой группы из / переменных, представленных в любой форме. При этом остальные т п — / переменных системы становятся параметрами.
Схема фильтра низкой частоты. |
Структурные схемы для реализации первого и второго каскадов легко получаются из схемы на рис. 6.7. Однако, используя (6.28) и особенности ОУ с дифференциальным входом, можно добиться некоторого сокращения числа используемых ОУ.
И, наконец, применение парафазных информационных сигналов и линий связи, а также соответствующей элементной базы ( например, токовых ключей или других элементов с дифференциальным входом) в значительной степени симметрирует схему связей, что также снижает восприимчивость ЦТС к несимметричным импульсным помехам.
Амплитудно-частотная характеристика при воспроизведении, удовлетворяющая стандарту NAB ( а, и схема усилителя воспроизведения для магнитофона, обеспечивающая такую характеристику ( б. -. -., , , , ,. |
Отличия реальных ОУ от идеального[править | править код]
Параметры ОУ, характеризующие его неидеальность, можно разбить на группы:
Параметры по постоянному токуправить | править код
- Ограниченное усиление: коэффициент Gopenloop не бесконечен (тпичное значение 105 ÷ 106 на постоянном токе). Этот эффект заметно проявляется только в случаях, когда коэффициент передачи каскада с ОУ отличается от парметра Gopenloop в небольшое число раз (усиление каскада отличается от Gopenloop на 1÷2 порядка или еще меньше).
- Ненулевой входной ток (или, что почти то же самое, ограниченное входное сопротивление): типичные значения входного тока составляют 10-9 ÷ 10-12 А. Это накладывает ограничения на максимальное значение сопротивлений в цепи обратной связи, а также на возможности с источником сигнала. Некоторые ОУ имеют на входе дополнительные цепи для защиты входа от чрезмерного напряжения — эти цепи могут значительно ухудшить входное сопротивление. Поэтому некоторые ОУ выпускаются в защищенной и незащищенной версии.
- Ненулевое . Данное ограничение не имеет большого значения, так как наличие обратной связи эффективно уменьшает выходное сопротивление каскада на ОУ (практически до сколь угодно малых значений).
- Ненулевое напряжение смещения: требование о равенстве входных напряжений в активном состоянии для реальных ОУ выполняется не совсем точно — ОУ стремится поддерживать между своими входами не точно ноль вольт, а некоторое небольшое напряжение (напряжение смещения). Другими словами, реальный ОУ ведет себя как идеальный ОУ, у которого внутри последовательно с одним из входов включен генератор напряжения с ЭДС Uсм. Напряжение смещения — очень важный параметр, он ограничивает точность ОУ, например, при сравнении двух напряжений. Типичные значения Uсм составляют 10-3 ÷ 10-6 В.
- Ненулевое усиление синфазного сигнала. Идеальный ОУ усиливает только разницу входных напряжений, сами же напряжения значения не имеют. В реальных ОУ значение входного синфазного напряжения оказывает некоторое влияние на выходное напряжение. Данный эффект определяется параметром коэффициент ослабления синфазного сигнала (КОСС, англ. common-mode rejection ratio, CMRR), который показывает, во сколько раз приращение напряжения на выходе меньше, чем вызвавшее его приращение синфазного напряжения на входе ОУ. Типичные значения: 104 ÷ 106.
Параметры по переменному токуправить | править код
- Ограниченная полоса пропускания. Любой усилитель имеет конечную полосу пропускания, но фактор полосы особенно значим для ОУ, поскольку они имеют внутреннюю частотную коррекцию для увеличения запаса по фазе.
- Ненулевая входная ёмкость. Образует паразитный фильтр низких частот.
Нелинейные эффекты:править | править код
- Насыщение — ограничение диапазона возможных значений выходного напряжения. Обычно выходное напряжение не может выйти за пределы напряжения питания. Насыщение имеет место в случае, когда выходное напряжение «должно быть» больше максимального или меньше минимального выходного напряжения. ОУ не может выйти за пределы, и выступающие части выходного сигнала «срезаются» (то есть ограничиваются).
- Ограниченая скорость нарастания. Выходное напряжение ОУ не может измениться мгновенно. Скорость изменения выходного напряжения измеряется в вольтах за микросекунду, типичные значения 1÷100 В/мкс. Параметр обусловлен временем, необходимым для перезаряда внутренних емкостей.
Ограничения, обусловленные питаниемправить | править код
- Ограниченный выходной ток. Большинство ОУ широкого применения имеют встроенную защиту от превышения выходного тока — типичное значение максимального тока 25 мА. Защита предотвращает перегрев и выход ОУ из строя.
- Ограниченная выходная мощность. Большинство ОУ предназначено для применений, не требовательных к мощности: сопротивление нагрузки не должно быть менее 2 кОм.
Принцип действия
Дифференциальный автомат отличается от простого автоматического выключателя тем, что в нем используется еще один канал отключения, который срабатывает при утечке тока на «землю». Можно сказать, что к автоматическому выключателю добавлено УЗО (устройство защитного отключения).
Сравнительная характеристика устройств по назначению
Название устройства | Назначение | Стандарт | Компоновка |
---|---|---|---|
ВДТ. Выключатель дифференциального тока. Автоматический выключатель, управляемый дифф. током, без встроенной защиты от сверхтоков | Защита людей от поражения током при КОСВЕННОМ касании и оборудования от тока утечек | ГОСТ Р 51326.1-99 | Механический коммутационный аппарат и дифф. модуль. |
АВДТ. Дифференциальный автомат. Автоматический выключатель, управляемый дифф. током, со встроенной защитой от сверхтоков | Защита людей от поражения током при КОСВЕННОМ касании и оборудования от тока утечек. Защита сети от сверхтоков | ГОСТ Р 51327.1-99 | Механический коммутационный аппарат, дифф. модуль, тепловой и электромагнитный расцепители. |
УЗО. Устройство защитного отключения, управляемое дифф. током | Защита людей от поражения током при КОСВЕННОМ и НЕПОСРЕДСТВЕННОМ** касании, защита оборудования от тока утечек. | ГОСТ Р 50807-95 (2001) | Механический коммутационный аппарат и дифф. модуль.* |
УЗО. Устройство защитного отключения, управляемое дифф. током со встроенной защитой от сверхтоков — УЗО | Защита людей от поражения током при КОСВЕННОМ и НЕПОСРЕДСТВЕННОМ** касании, защита оборудования от тока утечек. Защита сети от сверхтоков | ГОСТ Р 50807-95 (2001) | Механический коммутационный аппарат, дифф. модуль,* электромагнитный и тепловой расцепители. |
*Дифференциальный модуль, обеспечивающий защиту от непосредственного касания, отличается повышенной чувствительностью и малым временем срабатывания ** Касание токоведущих частей, находящихся под напряжением. | |||
В основе работы УЗО лежит сравнение тока «втекающего» (фаза) и «вытекающего» (ноль). Сравнение токов происходит с помощью дифференциального трансформатора на тороидальном сердечнике.
Схема работы УЗО
На этом сердечнике размещают три обмотки: одна – фазная, другая – нулевая, третья – сигнальная. При нормальном функционировании сети по фазной и нулевой обмоткам текут одинаковые токи в противоположных направлениях. Они создают в сердечнике магнитные поля, которые также направлены в разные стороны. В результате магнитное поле в сердечнике практически нулевое, из-за этого в сигнальной обмотке напряжение также равно нулю. Для проверки работоспособности служит ограничительный резистор R и кнопка «Тест», при нажатии на нее происходит срабатывание выключателя, это позволяет убедиться, что система в порядке.
Следует заметить, что под дифференциальным автоматом понимают устройство, объединяющее в одном корпусе УЗО и автоматический выключатель. Это замечание справедливо, потому что в точках продажи часто за диффавтомат выдают УЗО.
Если произошло нарушение целостности изоляции или человек коснулся оголенного провода, то часть фазного тока потечет не к нулевому проводу, а на «землю». Баланс токов и магнитного поля в трансформаторе нарушится, из-за этого в сигнальной катушке появится напряжение. Это напряжение вызывает срабатывание исполнительного устройства и отключает автомат. Время срабатывания составляет примерно 0,04 сек.
Схема работы дифференциальной защиты
На рисунке видно, что нарушилась изоляция какого-то прибора (R н), к примеру, холодильника, напряжение фазы попало на корпус, прикосновение человека к нему замкнуло эту цепь на «землю». Через фазный провод потечет суммарный i 1 +Δi ток, а через нулевой – только часть i 2 . Поэтому i 1 +Δi>i 2 , магнитный поток в кольце не равен нулю, и наведенный в сигнальной обмотке (1) ток поступает на исполнительный механизм, он и отключает сеть.
Пример работы инвертирующего усилителя
Давайте посмотрим, как работает наш усилитель в программе-симуляторе электронных схем Proteus. Здесь мы собираем базовую схему с двухполярным питанием
В Proteus она будет выглядеть вот так:
Здесь мы взяли значение резисторов R2=10 кОм и R1=1 кОм, следовательно, коэффициент усиления такой схемы будет равен -10. Знак “минус” в данном случае просто инвертирует усиленный сигнал, что мы и видим на осциллограмме ниже. Входной сигнал – это розовая осциллограмма, а выходной – это желтая осциллограмма. Выходной сигнал находится в противофазе относительно входного, то есть инвертирует его. Отсюда и название “инвертирующий усилитель”.