Применение диодов
Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).
Выпрямительные диоды.
С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.
Будет интересно Как устроен туннельный диод?
Параметры диодов
Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.
Таблица основных параметров выпрямительных диодов.
В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:
- U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
- U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).
Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.
Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.
- I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
- I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
- U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.
Будет интересно SMD транзисторы
Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.
Диоды высокого тока.
Как проверить диод — Diodnik
Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.
Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:
- пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
- обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
- утечка. В этом случае диод проводит незначительный обратный ток.
Как проверить диод мультиметром?
При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.
Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B.Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.
Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.
Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.
Подключив щупы, к аноду (красный +), а к катоду (черный –), мы видим значения на дисплее – это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.
Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.
На этом процедура проверки диода закончена – диод исправен.
Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.
Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.
Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке. Более детально о том, как проверить диод Шоттки читаем в этой статье.
VK
Odnoklassniki
Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Динамическое сопротивление — стабилитрон
Динамическое сопротивление стабилитронов меняется в зависимости от режима их работы.
Динамическое сопротивление стабилитрона при таком включении составляет несколько сот ом. В то же время режим работы усилителя цветоразностного сигнала после включения стабилитрона VD1 не изменяется, что позволяет сохранить необходимую амплитуду и линейность усиленных цветоразностных сигналов.
Динамическое сопротивление стабилитрона также является его параметром. Обычно оно имеет величину порядка нескольких сотен ом, а статическое сопротивление — порядка нескольких тысяч ом.
Схемы электронных стабилизаторов напряжения. |
Ядин — динамическое сопротивление стабилитрона.
Следовательно, при заданном выходном напряжении коэффициент стабилизации увеличивается при уменьшении динамического сопротивления стабилитрона или при увеличении линейного сопротивления.
Качество стабилизации схемы рис. 12 — 1, а нетрудно определить, если учесть, что динамическое сопротивление стабилитрона гст At / CT / A / CT шунтирует сопротивление нагрузки Rn для приращений напряжения и тока.
Схемы параметрических стабилизаторов напряжения с термокомпенсацией. |
Эта формула справедлива в тех случаях, когда частота пульсации выпрямленного напряжения ( ml) не влияет на величину динамического сопротивления Rg стабилитрона. У стабилитронов тлеющего и коронного разряда динамическое сопротивление растет с повышением частоты.
Схема параметрического. |
Внутреннее сопротивление схемы рис. 4.26 без учета сопротивлений диодов Дк так же, как и в однокаскадном параметрическом стабилизаторе, равно приближенно динамическому сопротивлению стабилитрона Дь Таким образом, применяя многокаскадные параметрические стабилизаторы, можно значительно повышать коэффициент стабилизации, однако стабильность выходного напряжения при изменении тока нагрузки остается такой же, что и в одно-каскадных схемах.
Минимальные значения Rn наблюдаются для диодов с пробивным напряжением около 7 в; с ростом пробивного напряжения с 7 до 18 в динамическое сопротивление стабилитрона возрастает приблизительно на порядок.
Схемы параметрических стабилизаторов напряжения с кремниевыми стабилитронами. |
Нтож — максимальный ток нагрузки; / СТ — наименьший ток стабилитрона, который должен быть выбран большим его минимального тока; Дл — динамическое сопротивление стабилитрона.
Bxy — входное сопротивление транзистора Гу в схеме с общим эмиттером ( определяется из входной характеристики Ту при f / к О); rdi — динамическое сопротивление стабилитрона.
Теория
Цель работы
Ознакомиться с основными фотометрическими величинами; ознакомиться с принципом работы фотометра; проверить выполнение закона Ламберта для источника света
Полупроводниковые диоды и стабилитроны
Выпрямительные диоды и стабилитроны представляют собой полупроводниковые приборы с одним электронно-дырочным переходом (p–n-переходом).
Одним из свойств p–n-перехода является способность изменять свое сопротивление в зависимости от полярности напряжения внешнего источника. Причем разница сопротивлений при прямом и обратном направлениях тока через p–n-переход может быть настолько велика, что в ряде случаев, например для силовых диодов, можно считать, что ток протекает через диод только в одном направлении – прямом, а в обратном направлении ток настолько мал, что им можно пренебречь. Прямое направление – это когда электрическое поле внешнего источника направлено навстречу электрическому полю p–n- перехода, а обратное – когда направления этих электрических полей совпадают. Полупроводниковые диоды, использующие вентильное свойство p–n-перехода, называются выпрямительными диодами и широко используются в различных устройствах для выпрямления переменного тока.
Вольт-амперная характеристика (ВАХ) идеализированного p–n-перехода описывается известным уравнением
где \(I_0\) – обратный ток p–n-перехода; \(q\) – заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) – постоянная Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) – температура в градусах Кельвина.
Графическое изображение этой зависимости представлено на рис. 1.1.
Вольт-амперная характеристика имеет явно выраженную нелинейность, что предопределяет зависимость сопротивления диода от положения рабочей точки.
Различают сопротивление статическое \(R_{ст}\) и динамическое \(R_{дин}\). Статическое сопротивление \(R_{ст}\), например в точке А (рис. 1.1), определяется как отношение напряжения \(U_A\) и тока \(I_A\), соответствующих этой точке: \(R_{ст} = \frac{U_A}{I_A} = tg{\alpha}\)
Динамическое сопротивление определяется как отношение приращений напряжения и тока (рис. 1.1): \(R_{дин} = \frac{\Delta U}{\Delta I}\);
Рис. 1.1
При малых значениях отклонений \(∆U\) и \(ΔI\) можно пренебречь нелинейностью участка АВ характеристики и считать его гипотенузой прямоугольного треугольника АВС, тогда \(R_{дин} = tgβ\).
Если продолжить линейный участок прямой ветви вольт-амперной характеристики до пересечения с осью абсцисс, то получим точку \(U_0\) – напряжение отсечки, которое отделяет начальный пологий участок характеристики, где динамическое сопротивление \(R_{дин}\) сравнительно велико от круто изменяющегося участка, где \(R_{дин}\) мало.
При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением \(I_{пр.max}\) при заданных условиях охлаждения.
Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине \(U_{проб}\) начнется его быстрое увеличение (рис. 1.2), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:
- обратимый (электрический пробой);
- необратимые (тепловой и поверхностный пробои).
Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.
Рис. 1.2
Поэтому в паспортных данных диода всегда указывается предельно допустимое обратное напряжение \(U_{проб}\) (напряжение лавинообразования), соответствующее началу пробоя p–n-перехода. Обратное номинальное значение напряжения составляет обычно \(0,5\ U_{проб}\) и определяет класс прибора по напряжению. Так, класс 1 соответствует 100 В обратного напряжения, класс 2 – 200 В и т. д.
В некоторых случаях этот режим пробоя используют для получения круто нарастающего участка ВАХ, когда малому приращению напряжения \(∆U\) соответствует большое изменение тока \(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме, называются стабилитронами, т. к. в рабочем диапазоне при изменении обратного тока от \(i_{обр. min}\) до \(i_{обр. max}\) напряжение на диоде остается почти неизменным, стабильным. Поэтому для стабилитронов рабочим является участок пробоя на обратной ветви ВАХ, а напряжение пробоя (напряжение стабилизации) является одним из основных параметров.
Примеры
Направление электрического тока и электронов вторичной батареи во время разряда и заряда.
Полярность напряжения на аноде по отношению к соответствующему катоду варьируется в зависимости от типа устройства и от его режима работы. В следующих примерах анод является отрицательным в устройстве, которое обеспечивает питание, и положительным в устройстве, которое потребляет электроэнергию:
В разряжающемся аккумуляторе или гальваническом элементе (диаграмма слева) анод является отрицательной клеммой, потому что именно здесь обычный ток течет в элемент. Этот входящий ток переносится извне электронами, движущимися наружу, отрицательный заряд, текущий в одном направлении, электрически эквивалентен положительному заряду, текущему в противоположном направлении.
В перезаряжаемой батарее или электролитическом элементе анод — это положительный полюс, на который поступает ток от внешнего генератора. Ток через перезаряжаемую батарею противоположен направлению тока во время разряда; Другими словами, электрод, который был катодом во время разряда батареи, становится анодом, пока батарея заряжается.
Эта неоднозначность в обозначении анода и катода вызывает путаницу в проектировании аккумуляторов, поскольку необходимо, чтобы анод и катод были связаны с уникальными физическими компонентами. Обычно электрод батареи, который выделяет электроны во время разряда, называют анодом или отрицательным (-) электродом, а электрод, который поглощает электроны, — катодом или положительным (+). электрод.
Обозначение физических электродов положительным (+) или отрицательным (-) имеет дополнительное преимущество, поскольку эта терминология одинаково хорошо применима как к условиям заряда / разряда аккумуляторных батарей, так и к электрохимии и электронным устройствам.
В диоде анод — это положительный вывод на конце символа стрелки (плоская сторона треугольника), где ток течет в устройство
Обратите внимание, что обозначение электродов для диодов всегда основано на направлении прямого тока (направление, указанное стрелкой, в котором ток течет «наиболее легко»), даже для таких типов, как стабилитроны или солнечные элементы, где интересующий ток — это сила тока. обратный ток.
В вакуумных трубках или газонаполненных трубках анод — это вывод, через который ток входит в трубку.
Основные характеристики стабилитрона
Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.
Номинальное напряжение стабилизации
Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме
У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:
- балластный резистор в 1…3 кОм;
- регулируемый источник напряжения;
- вольтметр (можно использовать тестер).
Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.
Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.
Диапазон рабочих токов
Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.
Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.
Дифференциальное сопротивление
Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.
Сопротивление диода
Различают два вида сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD.
Дифференциальное сопротивление (сопротивление по переменному току) определяется как
где I
– прямой ток,Is — тепловой (обратный) ток.
На прямом участке вольт-амперной характеристики диода дифференциальное сопротивление rD невелико и составляет значение несколько Ом. Действительно, при значении прямого тока диода I = 25 мА и значении теплового потенциала kT/q = 25 мВ величина дифференциального сопротивления rD будет равна rD = 1 Ом. На обратном участке вольт-амперной характеристики диода дифференциальное сопротивление rD стремится к бесконечности, поскольку в идеальных диодах при обратном смещении ток не зависит от напряжения.
Сопротивление по постоянному току RD определяется как отношение приложенного напряжения VG к протекающему току I через диод:
На прямом участке вольт-амперной характеристики сопротивление по постоянному току больше, чем дифференциальное сопротивление RD > rD, а на обратном участке — меньше RD
Стабилитроны
Стабилитроном называется полупроводниковый диод, вольт-амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт-амперной характеристики.
ВАХ стабилитрона имеет вид, представленный на рисунке 1.18а, а конструкция корпуса на рис. 1.18б.
При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф ≈ 2÷50 Ом.
Основное назначение стабилитрона — стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом.
Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, — лавинный и туннельный пробой p-n перехода.
Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб 8 .
Туннельный пробой в полупроводниках
Проанализируем более подробно механизмы туннельного и лавинного пробоя. Рассмотрим зонную диаграмму диода с p-n переходом при обратном смещении при условии, что области эмиттера и базы диода легированы достаточно сильно (рис. 1.19.).
Квантово-механическое рассмотрение туннельных переходов для электронов показывает, что в том случае, когда геометрическая ширина потенциального барьера сравнима с дебройлевской длиной волны электрона, возможны туннельные переходы электронов между заполненными и свободными состояниями, отделенными потенциальным барьером.
Форма потенциального барьера обусловлена полем p-n перехода. На рисунке 1.20 схематически изображен волновой пакет при туннелировании через потенциальный барьер треугольной формы.
Диод диоду рознь
Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».
Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром. На сегодняшний день в радиоэлектронике существует несколько видов диодов:
- светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
- защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.
Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен
Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод
В такой ситуации можно эти детали не выпаивать, а проверить «на месте».
Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:
- превышение максимально допустимого уровня прямого тока;
- превышение обратного напряжения;
- некачественная деталь;
- нарушение правил эксплуатации прибора, установленных производителем.
При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.
Проверяем диод на утечку
Если вы хотите проверить диод на утечку или короткое замыкание, то вам потребуется поменять местами выводы диода и переключить омметр на высокоомную шкалу. Если утечка повышена или имеет место короткое замыкание, сопротивление будет достаточно низким. Следует знать, что для германиевых диодов оно зачастую составляет от 100 килоом до 1 мегаом, в то время как для кремниевых диодов данное значение может достигать аж тысячи мегаом! Необходимо учесть, что выпрямительные диоды в большинстве своем имеют токи утечки гораздо больше. А некоторые диоды нередко отличаются более низким обратным сопротивлением, однако в некоторых схемах они вполне нормально работают. Теперь вы знаете, как проверить диод мультиметром, и ваши схемы будут функционировать, так как вам хочется.
Источник
Диоды с барьером Шотки
Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки. В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником. В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:
- более низкое прямое падение напряжения;
- имеют более низкое обратное напряжение;
- более высокий ток утечки;
- почти полностью отсутствует заряд обратного восстановления.
Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.
Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.
Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.