Проводники и диэлектрики в электрическом поле

Поведение проводника в электрическом поле

Деление на проводники, полупроводники и диэлектрики условное. Нет чёткой границы, градация ведётся по удельной проводимости веществ. Проводники хорошо проводят ток, диэлектрики практически лишены указанного качества.

Рассмотрим случай однородного поля с прямыми и параллельными друг другу силовыми линиями, как в большинстве учебников физики. Помещённый в постоянное поле металл начинает заряжаться статическим электричеством, как описано выше. Смысл: линии напряжённости идут в направлении, куда двигался бы положительный заряд – так решил Франклин. Но электроны отрицательны, плывут против течения.

В результате на образце проводника со стороны истока поля скапливается избыток носителей со знаком минус. А противоположный конец металла положителен. Процесс происходит так:

  1. Поле проникает внутрь металла.
  2. Проводник полон свободных носителей заряда, двигающихся вдоль силовых линий.
  3. Процесс перераспределения идёт, пока собственное поле электронов и свободных орбит атомов не уравновесит внешнее воздействие.
  4. На этом влияние постоянного электрического поля исчерпывается.

Электрическая индукция и напряженность (лучше не читать).

До сих пор мы говорили об однородном изотропном диэлектрике.
Если вещество анизотропно, то связь между индукцией и напряженностью усложняется.
Они уже не обязательно должны быть сонаправлены друг с другом. Как известно,
связь между двумя произвольными векторами осуществляется с помощью тензора второго
ранга. Таким тензором и является диэлектрическая проницаемость.


    
, где i,j=x,y,z

Если еще электрические поля достаточно сильные, например, в лазерах, то связь еще более усложняется


, где i,j=x,y,z    (11.24)

Поясним, что суммирование идет по повторяющимся индексам. Линейная зависимость
нарушается и в некоторых веществах (см. лекцию №12).

Диэлектрики в электростатическом поле. Механизм поляризации диэлектриков. Диэлектрическая проницаемость

Электризация проводников и диэлектриков во внешнем электрическом поле существенно отличается друг от друга: индуцированные заряды на поверхности проводников возникают в результате перемещения свободных зарядов во внешнем поле, в то время как в диэлектрике нет свободных зарядов, способных перемещаться под действием поля.

Электризацию диэлектриков называют поляризацией. Механизм ее заключается в перераспределении зарядов внутри нейтральных атомов и молекул под действием поля, либо в поворотах диполей в полярных диэлектриках, либо смещением подрешеток в пространстве в кристаллическом диэлектрике. Дело в том, что кристаллические решетки многих ионных диэлектриков типа NaCl можно считать состоящими из двух вставленных одна в другую подрешеток, каждая из которых образована ионами одного знака. Во внешнем электрическом поле и происходит смещение этих подрешеток.

Все диэлектрики можно условно разделить на три группы: полярные, неполярные и ионные.

Неполярные диэлектрики состоят из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов (рис. 1, б) совпадают (инертные газы, кислород, бензол, водород и др.).

Рис. 1

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают (рис. 1, а) (спирт, вода и др.). В качестве модели молекулы полярного диэлектрика используются электрические диполи — система двух равных по модулю и противоположных по знаку точечных зарядов, находящихся на расстоянии l друг от друга (рис. 2, а). Тепловое движение молекул приводит к хаотической ориентации диполей. Из-за этого на поверхности диэлектрика, а также и в любом его объеме, содержащем большое число молекул (рис. 3, а), электрический заряд в среднем равен нулю.

Рис. 2

Поместим теперь диэлектрик в однородное электростатическое поле между двумя параллельными металлическими пластинами. Со стороны поля на каждый электрический диполь будут действовать две силы, одинаковые по модулю и противоположные по направлению (рис. 2, б). Они создают момент пары сил, стремящийся повернуть диполь так, чтобы ось его была направлена по линиям напряженности поля (рис. 2, в). Положительные заряды смещаются при этом в направлении электростатического поля, а отрицательные — в противоположную сторону.

Рис. 3

Хаотическое тепловое движение молекул препятствует созданию упорядоченной ориентации всех диполей. Только при абсолютном нуле все диполи выстроились бы вдоль линий напряженности. Под влиянием поля происходит лишь частичная ориентация электрических диполей. Это означает, что в среднем число диполей, ориентированных вдоль поля, больше, чем число диполей, ориентированных противоположно полю. На рис. 3, б видно: у положительной пластины на поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а у отрицательно заряженной — положительные. В результате на поверхности диэлектрика возникает нескомпенсированный связанный заряд. Внутри диэлектрика положительные и отрицательные заряды диполей компенсируют друг друга и средний связанный электрический заряд по-прежнему равен нулю.

Неполярный диэлектрик в электрическом поле также поляризуется. Под действием поля положительные и отрицательные заряды молекулы смещаются в противоположные стороны и центры распределения положительного и отрицательного зарядов перестают совпадать, как и у полярной молекулы. Такие деформированные молекулы можно рассматривать как электрические диполи, оси которых направлены вдоль поля. На поверхностях диэлектрика, примыкающих к заряженным пластинам, появляются связанные заряды, как и при поляризации полярного диэлектрика.

Рис. 4

Связанный заряд создает электростатическое поле напряженностью \(~\vec E_1\), направленной в диэлектрике против напряженности внешнего поля зарядов на пластинах (рис. 4). Поэтому поле внутри диэлектрика ослабляется. Напряженность результирующего электростатического поля

\(~\vec E = \vec E_0 + \vec E_1\) или \(~E = E_0 — E_1 .\)

Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.

Диэлектрическая проницаемость ε — это физическая величина, показывающая, во сколько раз модуль напряженности электростатического поля Ε внутри однородного диэлектрика меньше модуля напряженности поля E в вакууме, созданного теми же зарядами:

\(~\varepsilon = \frac{E_0}{E} .\)

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Пробой диэлектрика

Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?

Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.

Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.

Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит

Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:

  • тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
  • электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​\( \varphi \)​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​\( \Delta\varphi \)​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​\( U \)​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:. Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​\( q \)​ в точке, удаленной от него на расстояние ​\( r \)​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​\( r =R \)​, где ​\( R \)​ – радиус шара). Напряженность поля внутри шара равна нулю. Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Презентация на тему: ” Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.” — Транскрипт:

2

Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники

3

Проводники и диэлектрики все металлы Имеются заряженные частицы (заряды частиц = свободные заряды) Способные перемещаться внутри проводника под действием электрического поля Проводники Диэлектрики Состоят из нейтральных в целом атомов или молекул Заряженные частицы связаны друг с другом и не могут перемещаться под действием поля по всему объему тела

4

Проводники и диэлектрики Свободные заряды – заряженные частицы одного знака, способные перемещаться под действием электрического поля Не могут возникнуть, если энергия связи электрона со своим атомом велика по сравнению с энергией взаимодействия с соседними атомами вещества СВЯЗАННЫЕ ЗАРЯДЫ

5

Проводники и диэлектрики – вещество, в котором свободные заряды могут перемещаться по всему объему ПРОВОДНИК металлы растворы солей, кислот, щелочей Влажный воздух плазма Тело человека

6

Проводники В металлах носители свободных зарядов = электроны При образовании металла из нейтральных атомов атомы взаимодействуют друг с другом электроны внешних оболочек атомов полностью утрачивают связи со своими атомами и становятся собственностью всего проводника в целом положительные ионы окружены отрицательно заряженным газом из электронов (взаимодействие кулоновское)

7

Проводники электрические заряды неподвижны! поле внутри проводника = 0 в проводнике – свободные заряды существовал бы электрический ток E 0 иначе НЕТ ТОКА – НЕТ И ПОЛЯ!!!

8

Проводники заряженный незаряженный, помещенный во внешнее электрическое поле ПРОВОДНИК ВНУТРИ E = 0 (поле отсутствует)

9

Проводники уничтожение электростатического поля в проводнике Электрическое поле Проводящий шар Сначала возникнет электрический ток, так как поле внутри шара вызывает перемещение электронов Части шара заряжаются по-разному: Левая – отрицательно; Правая – положительно (явление электростатической индукции) Эти заряды на поверхности проводника создают электрическое поле, которое накладывается на внешнее поле и компенсирует его

10

Проводники уничтожение электростатического поля в проводнике Линии электростатического поля вне проводника перпендикулярны его поверхности – иначе по поверхности бы протекал электрический ток

11

Диэлектрики – вещество, содержащее только связанные заряды

12

Диэлектрики – вещество, содержащее только связанные заряды ДИЭЛЕКТРИК

13

Диэлектрики – разноименные заряды, входящие в состав атомов (или молекул), которые не могут перемещаться под действием электрического поля независимо друг от друга СВЯЗАННЫЕ ЗАРЯДЫ

14

Диэлектрики полностью отсутствуют!!! СВОБОДНЫЕ ЗАРЯДЫ диэлектрик практически не проводит электрический ток ХОРОШИЙ ИЗОЛЯТОР!!!

15

Диэлектрики ГАЗЫ ДИЭЛЕКТРИКИ НЕКОТОРЫЕ ЖИДКОСТИ НЕКОТОРЫЕ ТВЕРДЫЕ ТЕЛА дистиллированная вода, бензол Стекло, фарфор, слюда

16

Диэлектрики в соответствии со структурой их молекул ДИЭЛЕКТРИКИ деление полярные неполярные

17

Диэлектрики (полярные)

18

Диэлектрики (неполярные) В неполярных диэлектриках электростатическое поле сначала поляризует молекулы, растягивая в разные стороны положительные и отрицательные заряды, а затем поворачивает их оси вдоль напряженности поля

19

Диэлектрики – процесс ориентации диполей или появление под действием внешнего электрического поля ориентированных по полю диполей ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА

20

Диэлектрики – число, показывающее, во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженность в вакууме ОТНОСИТЕЛЬНАЯ ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ СРЕДЫ

21

Диэлектрики Уменьшение напряженности электростатического поля в диэлектрике приводит к тому, что сила взаимодействия точечных зарядов q 1 и q 2, находящихся в диэлектрике на расстоянии r друг от друга, уменьшается в ε раз:

22

Полупроводники – вещество, в котором количество свободных зарядов зависит от внешних условий (температура, напряженность электрического поля) ПОЛУПРОВОДНИК

Виды диэлектриков

Диэлектриками, или изоляторами, называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному. Это свойство диэлектриков обусловлена тем, что в них при определенных условиях нет свободных носителей заряда. Если условия меняются, например, при нагревании, в диэлектрике могут возникнуть свободные носители заряда, и он начнет проводить электричество. Итак, разделение веществ на проводники и диэлектрики является условным.

К диэлектрикам относятся все газы при нормальных условиях, жидкости (керосин, спирты, ацетон, дистиллированная вода и др.), твердые тела (стекло, пластмассы, сухое дерево, бумага, резина и т.д.).

В диэлектриках электрические заряды не могут перемещаться под действием электрического поля по всему объему тела так, как свободные заряды проводника.

Диэлектрики делят на два вида:

  • полярные, состоящие из молекул, в которых центры распределения положительных и отрицательных зарядов не совпадают (вода, спирты и др.)
  • неполярные, состоящие из атомов или молекул, в которых центры распределения положительных и отрицательных зарядов совпадают (бензол, инертные газы, полиэтилен и др.).

Виды диэлектриков: а — полярные; б — неполярные

Точечный заряд и плоский диэлектрик.

Для решения этой задачи предоставим слово Д.В. Сивухину (§24). Пусть два однородных изотропных
диэлектрика с диэлектрическими проницаемостями e1
и e2 граничат друг с другом вдоль плоскости.
В первом диэлектрике есть точечный заряд q. Поле в обеих областях складывается из поля этого
заряда и поляризационных зарядов на границе раздела. Введем предположение, что поле
поляризационных зарядов в первом диэлектрике эквивалентно полю какого-то заряда
q1 зеркально расположенного относительно границы раздела (рис.12.8).

Тогда для поля в первом диэлектрике можно написать

Введем еще одно предположение, что поле во втором диэлектрике образовано еще
одним фиктивным зарядом q2, расположенным там же где и исходный заряд.

Справедливость предположений будет доказана дальнейшими вычислениями.

Теперь на границе поля надо «сшить».


и

Из последних уравнений и находим необходимые заряды.

Окончательно получаем следующие выражения для полей.


и

Эти выражения удовлетворяют
всем условиям задачи и, по теореме единственности других решений быть не может.
Если считать диэлектрическую проницаемость второй среды очень большой (проводник),
то получаем поле точечного заряда около проводящей плоскости (см. ).

Легко рассчитать силу, действующую на заряд со стороны диэлектрика, как силу между зарядами
q и q1


    (12.43)

Заряд может, как притягиваться, так и отталкиваться. Все зависит от того, в какой среде проницаемость
больше. Это более общее выражение, чем (10.4)

Поле в диэлектрике

Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.

Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика – это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы – в другую. Так вот, давайте же разберемся в видах поляризации.

Деформационная (или же электронная)

Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто – главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки – против поля.

Дипольная (или же ориентационная)

Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто – когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.

Ионная

Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные – против.

Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.

Теорема Остроградского-Гаусса в дифференциальной форме

Напомним формулу вектора электрической индукции:

D→=εE→+P→ со значением ε в качестве электрической постоянной, E→ — вектора напряженности, P→ — вектора поляризации.

Произведем подстановку формулы D→=εE→+P→ в div D→=ρ:

div D→=div εE→+P→=εdiv E→+div P→.

При использовании теоремы Остроградского-Гаусса дифференциального вида, получим:

div E→=1ερ-div P→.

Для вектора напряженности вышеуказанная формула примет вид в присутствии диэлектрика:

div E→=1ερ+ρsv с ρsv, являющейся плотностью заряда. В этом случае необходимо применить div E→=1ερ+ρsv и div E→=1ερ-div P→:

div P→=-1εcsv.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Что такое конденсатор, виды конденсаторов и их применение

Какие существуют виды источников электрического тока?

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Что такое нихромовая проволока, её свойства и область применения

Что такое соединительная муфта для кабеля?

Теорема Остроградского-Гаусса

Теорема 1

Если использовать вектор электрического смещения D→, то это заметно облегчает анализ поля при наличии диэлектрика. Теорему Остроградского-Гаусса при наличии диэлектрика можно записать в интегральном виде:

∮SD→·dS→=∑i=1Nqi=Q, где Q является суммарным свободным зарядом, находящийся внутри объема, который ограничен поверхностью S.

Поток вектора D→ через замкнутую поверхность может быть определен только с помощью свободных зарядов. В вакууме векторы D→ и E→ совпадающие.

Определение 1

Дифференциальная форма теоремы Гаусса выражения ∮SD→·dS→=∑i=1Nqi=Q изображается как:

div D→=ρ с ρ, являющейся объемной плотностью свободных зарядов.

Теорема Остроградского-Гаусса вида ∮SD→·dS→=∑i=1Nqi=Q и div D→=ρ справедлива только в электростатике и выполняется для переменных полей. Ее относят к составной части системы уравнений Максвелла.

Точечный заряд и проводящая сфера.

Еще раз вернемся к задаче о взаимодействии точечного заряда и нейтральной сферы. Если вы внимательно
прочитали , то без труда можете рассчитать силу, с которой
сфера действует на заряд


или
,

где . Если |m|<<1, то есть
точечный заряд достаточно далеко от шара, то

что в точности совпадает с (12.29).

Попробуем вычислить силу, действующую на эту сферу, воспользовавшись (12.13). Для этого сначала
найдем напряженность поля в каждой точке сферы. Исходя из рис.12.6, получаем


,

где 0<|m|<1.

Вспоминая связь между напряженностью и поверхностной плотностью заряда (9.9),

можно построить график зависимости поверхностной плотности заряда от угла (рис.12.7). Видно, что
сфера заряжена неравномерно. Напротив точечного заряда поверхностная плотность противоположна
по знаку и максимальна по модулю. Интегрированием по поверхности сферы можно
убедиться, что суммарный заряд на ней равен 0, как и предполагалось.

Используя (12.13) можно убедиться, что сила получается той же самой. Если представить эту сферу
собранной из 2 половинок, то можно рассчитать силу, действующую на каждую половинку, и тем
самым определить, какие силы стремятся растянуть эту сферу.

Аморфные диэлектрики. Какие они?

Чем особенны аморфные диэлектрики? Главное, что отличает их от других – это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.

Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.

Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

  • смещать связанные заряды (это только электроны и ионы)
  • накладывать на беспорядочное движение тепла поля, которое будет это движение упорядочивать (положительные заряды будут идти в одну сторону с полем, а отрицательные – в обратную)

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

  • новое равновесное состояние с другим распределением зарядов, причем движение сразу прекращается при достижении равновесия
  • пока поле будет действовать, упорядочивание может длится, пока в нем еще останутся свободные электроны или свободные ионы, о которых мы поговорили выше

Что такое поляризация?

Диэлектрики – это вещества, не имеющие, при нормальных условиях,  свободных электрических зарядов.

Атом углерода в кристалле алмаза

Рассмотрим отдельный атом диэлектрика, например, атом углерода в кристалле  алмаза. Он симметричен.  У него есть положительно заряженное ядро и отрицательно заряженное электронное облако. Суммарный электрический заряд атома равен нулю, он электрически нейтрален.

Когда на атом действует внешнее электрическое поле, его электронное облако меняет форму, смещается в сторону положительных электрических зарядов. Атом становится полярным: у него появляются положительный и отрицательный полюса.

На поверхности кристалла, обращенной к положительному электроду, формируется отрицательный заряд. На противоположной поверхности, обращенной к отрицательному электроду – заряд положительный.

Диэлектрик, на который не действует электрическое поле. Атомы нейтральны.Диэлектрик помещен между положительным и отрицательным электродами. На поверхностях диэлектрического тела формируются электрические заряды.

Значит ли это, что мы наблюдаем хорошо известный эффект «статического электричества»? Нет, в данном случае на поверхность не попадают дополнительные электроны. Причиной поляризации является действие внешнего электрического поля, деформирующее электронные облака атомов.