Изолента
Изоляционная лента или изолента знакома пожалуй каждому. По внешнему виду это узкий (не всегда) рулон цветного или чёрного материала. Внутренняя сторона ленты покрыта клеящим составом для приклеивания. Используется лента накручиванием на место изоляции перекрывающими витками.
По материалу изготовления изоляционная лента бывает:
- Поливинилхлоридной (ПВХ)
- Хлопчатобумажной (ХБ)
Первый тип изоленты представлен широким цветовым спектром. ХБ изолента чёрного цвета с характерным запахом резины или битума.
Изолента ПВХ
ПВХ изоленту изготавливают из винила, нанося на одну сторону ленты клеящий состав. Ширина изоленты ПВХ от 15 до 50 мм. Достоинства изоленты ПВХ в высокой эластичности. Недостатки в изменении своих свойств при снижении и повышении температуры. ПВХ изоленты отличные, однако дальше низких напряжения её применение не распространяется.
Изолента ХБ
ХБ изолента характерно чёрного цвета в рулонах шириной 15- 50 мм. Изготавливается из хлопчатобумажных лент из пропиткой в резине и нанесением клеящего слоя на одну сторону. Сочетание хлопка (возможно стеклоткани) делают ХБ ленту устойчиво к колебаниям температур и её применение распространяется на сети напряжением свыше 1000 В.
Что будет, если воздействовать извне?
Если приложить к электрическому диэлектрику внешнее электрическое поле, то свободные заряды диэлектрика начнут постепенно нейтрализовывать его. Причем, это будет происходить до тех пор, пока не закончатся электроны или результирующее поле не станет равным нулю.
Чтобы понять то какие вещества вообще могут взаимодействовать с электрическими полями, нам нужно разобраться в таком термине, как электропроводность. Если говорить простым языком, то для взаимодействия с электрическим полем у вещества должна быть довольно низкая электропроводность.
Если мы будем говорить точнее, то удельное сопротивление должно быть сравнимо с 1010 Q-см или даже сильно превосходило это значение.
Свойства диэлектриков
Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.
Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости
С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).
Аморфные диэлектрики
В аморфных диэлектриках с их более рыхлой структурой имеется значительно больше мест, в которых может находиться ион в равновесном состоянии. Затрата энергии при переходе из одного равновесного состояния в другое также будет различна. Будут существовать переходы, требующие меньшей затраты энергии, при которых ион не будет однако полностью освобождаться от связывающих его сил, а, оставаясь «полусвязанным», перемещаться лишь на небольшое расстояние. Эти переходы и будут в основном происходить в результате теплового движения. Некоторое значительно меньшее количество ионов, более богатых энергией, сможет полностью оторваться от связующих их сил. Эти ионы по аналогии со случаем кристаллической решетки можно условно назвать «свободными». Данная картина теплового движения соответствует твердому состоянию.
Переход от твердого к жидкому состоянию
Переход от твердого к жидкому состоянию происходит различно для кристаллических и для аморфных веществ. В первом случае мы наблюдаем резкую t°пл T8, причем вязкость жидкости уже при температуре Тs мала. В случае аморфных диэлектриков t°пл не наблюдается, а переход из одного состояния в другое происходит в первом приближении непрерывно путем постепенного уменьшения вязкости. Более детальное изучение явления перехода из твердого в жидкое состояние показывает однако, что существует некоторая характерная для данного вещества температуpa Тg, при которой вязкость испытывает резкий скачок и вещество, оставаясь весьма вязким, начинает течь.
Ниже температуры Тg вещество следует считать твердым, выше — жидкостью. При температуpax, несколько превышающих Тg, аморфный диэлектрик сохраняет ряд свойств, характерных для твердого состояния. Молекулы диэлектрика остаются еще частично упруго связанными. Чем выше температура, тем слабее эти упругие связи; при температурах, значительно превосходящих Тg, можно в первом приближении считать, что молекулы в жидкости перемещаются свободно. При температуpax, близких к началу размягчения, перемещение молекул хотя уже и является принципиально возможным, но сильно затруднено. Внешне это сказывается в том, что вязкость такой жидкости еще очень велика. При повышении температуры перемещение молекул встречает меньше препятствия; параллельно убывает и вязкость.
За меру того, в какой степени молекулы «свободны» в своих перемещениях, мы можем поэтому выбрать вязкость жидкости. Тепловое движение молекул в жидкостях заключается:
- в колебании около положения равновесии, когда они связаны в комплексы,
- в поступательных и вращательных перемещениях когда они свободны.
При плавлении кристаллического диэлектрика, имеющих ионную решетку (например солей), получается как правило проводящая жидкость, которая диэлектриком считаться не может. В случае кристаллов с атомной и молекулярной решеткой плавление приводит в диэлектрическим жидкостям, имеющим малую вязкость; перемещение молекул в этих жидкостях можно считать свободным.
Жидкости кроме нейтральных молекул всегда содержат некоторое количество ионов, получившихся как вследствие диссоциации молекул жидкости, так и вследствие диссоциации молекул примесей. В газообразном состоянии как поступательное, так и вращательное движение молекул ничем не ограничено.
Примеры применения
Конструктивные элементы для удержания нагревательных элементов в фенах, калориферах, тепловентиляторах, паяльниках и т.д.
Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условияхмеханических нагрузок.
Как защитное окошко выхода микроволнового излучения от магнетрона в микроволновках. (обычно попадая на слюду еда обугливается, и становясь проводником, начинает бурно искрить, от чего владельцы микроволновки со страху микроволновку выбрасывают, хотя достаточно вырезать пластинку из листа слюды и заменить окошко.)
Слюдяное окошко в микроволновке. Иногда встречаются пластиковые, но только у моделей без гриля.
Благодаря тому, что тонкие пластинки слюды не пропускают газы, но пропускают энергичные заряженные частицы — слюдяные окошки используются в конструкциях счетчиков альфа и бета частиц.
Используется в конструкциях радиоламп — удерживает электроды на своих местах.
Восьмигранная пластинка изготовлена из слюды.
Используется как материал слюдяных конденсаторов. Слюда выступает диэлектриком, а электродами — проводящее напыление металла на пластинках слюды. Данный вид конденсаторов встречается всё реже и реже, вытесненный конденсаторами на базе полимерных пленок. Слюдяные конденсаторы могут работать при высокой температуре.
Слюдяные конденсаторы производства СССР полувековой давности.
Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.
До появления и широкого распространения теплопроводящих изолирующих прокладок из полимерных материалов, вроде Номакон, слюдяные пластинки использовались для электрической изоляции компонентов при сохранении теплового контакта, например, когда необходимо на один радиатор закрепить несколько транзисторов, корпуса которых под разными напряжениями.
Пластинки природной щипаной слюды.
Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.
Слюда
Слюда.щипаная слюдамиканитмикалента, микафолий, стекломиканитслюдяная бумага (слюдинит, слюдопласт)микалекс
Примеры применения
Нагреватели бытовых тепловентиляторов. Конструкция слева менее материалоемкая, но значительно менее надежная, особенно в условиях механических нагрузок.Окошко вывода микроволнового излучения из слюды.Восьмигранная пластинка изготовлена из слюды.Слюдяные конденсаторы производства СССР полувековой давности.Пластинки слюды в конденсаторе. Металлизация на пластинках формирует обкладки.Пластинки природной щипаной слюды.
Интересные факты о слюде
Природная слюда прозрачна. Слюдоматериалы полученные переработкой природной слюды как правило непрозрачны.Окно со вставками из слюды из экспозиции красноярского краеведческого музеяЭлектрические соединения с нагревательным элементом выполнены полыми заклепками.
Свойства диэлектриков
Выбор диэлектриков должен осуществляться в соответствии с их свойствами:
- Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
- Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
- Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
- Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.
Характеристики электроизоляторов
Одной из главных характеристик диэлектриков является поверхностное сопротивление. Это сопротивление, которое возникает в момент прохождения тока по поверхности материала. Следующей по значимости характеристикой можно назвать диэлектрическую проницаемость. Как уже говорилось, проницаемость напрямую связана с пробиваемостью целевого материала. И отдельного внимания заслуживают физико-химические характеристики. В их числе отмечают водопоглощаемость, вязкость и кислотность. Водопоглощаемость указывает на степень пористости материала и присутствие в нем водорастворимых элементов. Чем выше это значение, тем выше эффективность материала как диэлектрика
В свою очередь, вязкость характеризуется текучестью, что важно для определения взаимодействия материала с жидкостными или расплавленными диэлектриками. Кислотным числом обычно характеризуются жидкие диэлектрики
Например, основные особенности электроизоляционных материалов сводятся к способности нейтрализовать свободные кислоты, содержащиеся в 1 г материала. Присутствие свободных кислот понижает электроизоляционные качества электроизоляторов.
Примечания[править | править код]
- Quote from Encyclopædia Britannica: «Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.»
- Quote from Encyclopædia Britannica: «Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them because, unlike metals, they have no loosely bound, or free, electrons that may drift through the material.»
- Arthur R. von Hippel, in his seminal work, Dielectric Materials and Applications, stated: «Dielectrics… are not a narrow class of so-called insulators, but the broad expanse of nonmetals considered from the standpoint of their interaction with electric, magnetic, or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids, and with the storage of electric and magnetic energy as well as its dissipation.» (Technology Press of MIT and John Wiley, NY, 1954).
Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»
Электроизоляционные материалы и сферы их применения
К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.
Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.
Виды и классификация диэлектрических материалов
Изоляторы подразделяются на группы по нескольким критериям.
Классификация по агрегатному состоянию вещества:
- твёрдые — стекло, керамика, асбест;
- жидкие — растительные и синтетические масла, парафин, сжиженный газ, синтетические диэлектрики (кремний- и фторорганические соединения хладон, фреон);
- газообразные — воздух, азот, водород.
Диэлектрики могут иметь природное или искусственное происхождение, иметь органическую или синтетическую природу.
К органическим природным изоляционным материалам относят растительные масла, целлюлоза, каучук. Они отличаются низкой термо и влагостойкостью, быстрым старением. Синтетические органические материалы — различные виды пластика.
К неорганическим диэлектрикам естественного происхождения относятся: слюда, асбест, мусковит, флогопит. Вещества устойчивы к химическому воздействию, выдерживают высокие температуры. Искусственные неорганические диэлектрические материалы — стекло, фарфор, керамика.
Пробой диэлектрика
Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?
Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.
Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.
Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит
Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:
- тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
- электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.
Параметры изоляции
К числу основных относятся:
- электропрочность;
- удельное электрическое сопротивление;
- относительная проницаемость;
- угол диэлектрических потерь.
Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.
§ 5. Проводники и диэлектрики в электрическом поле
Как нам уже известно, проводник представляет собой тело, которое содержит большое число свободных электронов, заряды которых компенсируются положительными зарядами ядер атомов. Если металлический проводник поместить в электрическое поле (рис. 12), то под влиянием сил поля свободные электроны проводника придут в движение в сторону, противоположную направлению сил поля. В результате этого на одной стороне проводника возникает избыточный отрицательный заряд, а на другой стороне проводника — избыточный положительный заряд.
Рис. 12. Проводник в электрическом поле
Разделение зарядов в проводнике под влиянием внешнего электрического поля называется электризацией через влияние, или электростатической индукцией, а заряды на проводнике — индуцированными зарядами.
Индуцированные заряды проводника создают добавочное электрическое поле, направление которого противоположно внешнему полю.
Результирующее электрическое поле внутри проводника уменьшается, а вместе с ним уменьшаются силы, действующие на перераспределение зарядов. Движение зарядов в проводнике прекратится, когда напряженность поля, вызванного индуцированными зарядами проводника εп, станет равной напряженности внешнего поля εвн, а результирующая напряженность поля внутри проводника будет равна нулю.
Как было указано выше, диэлектрик отличается от проводника отсутствием свободных электронов (точнее, весьма малым количеством свободных электронов). Электроны атомов диэлектрика прочно связаны с ядром атома.
Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется через влияние. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах каждой молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате на поверхности диэлектрика возникнут электрические заряды.
Рассматриваемое явление называется поляризацией диэлектрика.
Различают диэлектрики двух классов. У диэлектриков первого класса молекула в нейтральном состоянии имеет положительный и отрицательный заряды, настолько близко расположенные один к другому, что действие их взаимно компенсируется. Под влиянием электрического поля положительные и отрицательные заряды в пределах молекулы несколько смещаются один относительно другого, образуя диполь* (рис. 13).
* ()
Рис. 13. Электрические заряды молекул диэлектрика: а — без внешнего поля, б — при наличии поля
У диэлектриков второго класса молекулы и в отсутствие электрического поля образуют диполи. Такие диэлектрики называются полярными. К ним относятся вода, аммиак, эфир, ацетон и т. д. У таких диэлектриков при отсутствии электрического поля диполи в пространстве расположены хаотически, и вследствие этого результирующее электрическое поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы (а стало быть, и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. С устранением электрического поля поляризация диэлектрика исчезает. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.
При некоторой определенной величине напряженности электрического поля смещение зарядов достигает предельной величины, после чего происходит разрушение — пробой диэлектрика, в результате которого диэлектрик теряет свои изолирующие свойства и становится токопроводящим.
Напряженность электрического поля, при которой наступает пробой диэлектрика, называется пробивной напряженностью εпр. Напряженность поля, допускаемая при работе диэлектрика εдоп, должна быть меньше пробивной напряженности. Отношение
называется запасом прочности.
Приведем значения пробивной напряженности (в кв/мм) для некоторых диэлектриков:
Параметры изоляции
К числу основных относятся:
- электропрочность;
- удельное электрическое сопротивление;
- относительная проницаемость;
- угол диэлектрических потерь.
Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.
Формула определения длины проводника
Сопротивление тока: формула
Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.
Тогда длина проводника определяется другим способом. Для этого необходимо подготовить:
- строительную рулетку,
- тестер,
- штангенциркуль,
- таблицу электропроводности металлов.
Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.
Из формулы определения сопротивления (R = r * L * s) находят длину проводника по формуле:
L = R / r*s,
где:
- L – длина провода,
- R – его сопротивление,
- r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
- s – площадь поперечного сечения провода.
Рассчитывают сечение провода:
S = π/4 * D2,
где:
- π – число, приблизительно равное 3,14;
- D – диаметр, замеряемый штангенциркулем.
Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.
Если катушка круглого сечения, измеряют её диаметр, умножают на число π и на количество витков:
L = d * π * n,
где:
- d – диаметр катушки,
- n – число витков провода.
Чем отличаются диэлектрики от проводников и полупроводников
Теоретическую разницу между этими тремя видами материалов можно представить, и я это сделаю, на рисунке ниже:
Рисунок красивый, знакомый со школьной скамьи, но что-то практическое из него не особо вытянешь. Однако, в этом графическом шедевре четко определена разница между проводником, полупроводником и диэлектриком.
И отличие это в величине энергетического барьера между валентной зоной и зоной проводимости.
В проводниках электроны находятся в валентной зоне, но не все, так как валентная зона — это самая внешняя граница. Точно, это как с мигрантами. Зона проводимости пуста, но рада гостям, так как у неё полно для них свободных рабочих мест в виде свободных энергетических зон. При воздействии внешнего электрического поля, крайние электроны приобретают энергию и перемещаются в свободные уровни зоны проводимости. Это движение мы еще называем электрическим током.
В диэлектриках и проводниках всё аналогично, за исключением того, что имеется “забор” — запрещенная зона. Эта зона расположена между валентной и зоной проводимости. Чем больше эта зона, тем больше энергии требуется для преодоления электронами этого расстояния. У диэлектриков величина зоны больше, чем у полупроводников. Этому есть даже условие: если дЭ>3Эв (электронвольт) — то это диэлектрик, в обратном случае дЭ
В данной статье речь далее пойдет только о диэлектриках. И раз уж мы чуть углубились в науку, то поговорим далее о свойствах и величинах, которые характеризуют эти электротехнические материалы в общем.
А откуда берется низкая электропроводность?
Как мы знаем из базовой программы по физике, все вещества состоят из атомов. И эти атомы очень активно взаимодействуют друг с другом. У каждого из них есть свой заряд, и благодаря зарядам атомы так или иначе взаимодействуют.
Однако, как же создается такая низкая электропроводность? Вроде же есть атомы, они как-то там взаимодействуют и ток по ним мог бы идти, но не все так просто. Залогом того, чтобы проводимость вещества была низкой, выступает очень важный факт.
Если при наложении поля электроны, ионы и другие частицы не смогут свободно перемещаться или будут это делать очень плохо, то и электропроводность будет низкая, ведь все будет стоять на своих местах и свободным электронам будет просто некуда деться.
Свойства диэлектриков
Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.
Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости
С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).