Прописные истины для новичков

Содержание

Как возникает напряжение

Процесс возникновения напряжения в электрической цепи состоит из следующих этапов:

  1. Цепь, состоящую из проводников и потребителей, подключают к двум полюсам источника тока (батареи или генератора);
  2. На одном из полюсов источника (клемм батареи или контактных выводов генератора) содержится избыток электронов, на другом – недостаток. Тот полюс, на котором сконцентрировались носители заряда (электроны), принято называть положительным, в то время как второй – отрицательным.
  3. При подключении к цепи источника питания находящиеся на положительном полюсе и в проводнике свободные электроны под действием возникшего электро поля начнут притягиваться к отрицательно полюсу батареи, имеющему положительный заряд вследствие отсутствия электронов.
  4. Вследствие разности потенциалов между клеммами источника питания в проводниках и нагрузке возникнет упорядоченное движение электронов, и появится разность потенциалов определенной величины. При этом потенциал полюса с избытком электронов в случае с источниками постоянного тока постепенно уменьшается.

На заметку. Наиболее доходчиво и просто объясняет, что такое напряжение, определение, гласящее, что это разность между количеством свободных подвижных электронов на разных концах электрической цепи (клеммах источника питания).

Напряжение тока – что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока – это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение – это синонимы, как и переменный ток и переменное напряжение. Получается фраза “напряжение тока” говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос “какое напряжение тока в розетке” вы можете смело ответить: переменный ток 220 Вольт”, а на вопрос “какое напряжение тока тока у автомобильного аккумулятора”, вы можете ответить “12 Вольт постоянного тока”. Так что не стоит пугаться).

Эффективность электронных коммутируемых электродвигателей

Электродвигатели с электронным управлением ЕС — бесщеточные двигатели постоянного тока, управляемые внешней электроникой — либо электронная плата, либо преобразователь частоты. Ротор содержит постоянные магниты, а статор имеет набор неподвижных обмоток. Коммутация выполняется с помощью электронных схем. «Плата» переключает фазы в неподвижных обмотках, чтобы поддерживать вращение двигателя. Это позволяет поддерживать тока якоря. Когда подключается напряжение правильной полярности и в нужное время возрастает  точность электрической машины. Поскольку скорость двигателя контролируется внешней электроникой, двигатели EC не имеют ограниченной синхронной скорости.

Двигатели EC имеют несколько преимуществ. Поскольку они не имеют щеток, они не искрят и срок их службы больше из-за отсутствия щеток, имеют меньше потери из-за «смарт управления» статором. Они обеспечивают лучшую производительность и управляемость,  чем асинхронные двигатели. С точки зрения размеров — небольшие электродвигатели могут достигать таких же габаритов, что и традиционные электрические машины постоянного или переменного тока.

Распределение мощности намного лучше у машин с электронным управлением. Бесщеточные электродвигатели постоянного тока (BLDC) зависят от источника питания постоянного напряжения. При использовании машин переменного тока появляются дополнительные затраты и сложность системы в случае необходимости регулирования. ЕС электродвигатели могут напрямую подключаться к источникам переменного тока благодаря наличию электронной системы управления. Более того, они слабо подвержены влиянию изменений частоты и напряжения сети, из чего можно сделать вывод что небольшие просадки напряжения сети не окажут существенного влияния на мощность машины, в отличии от асинхронных электродвигателей.

Если сравнить эффективность ЕС машины с машиной переменного тока с расщепленным полюсом или с конденсаторным электродвигателем, то можно увидеть, что машина с расщепленным полюсом имеет КПД порядка 15% — 25%, конденсаторные электродвигатели 30% — 50%, а ЕС машины имеют КПД в пределах 60% — 75% и являются наиболее эффективными и энергосберегающими.

Диапазон изменения КПД для конденсаторных асинхронных машин довольно велик и лежит в пределах 30% — 50%, что особенно сильно ощутимо при неполной их загрузке, например при работе в системах вентиляции и кондиционирования. ЕС электродвигатели имеют меньший диапазон изменения КПД при работе на различных скоростях и с различной нагрузкой. Как правило, у таких машин КПД не ниже 70%, а в машинах, работающих с номинальными параметрами, он может превышать 80%.

Машины с электронным управлением имеют регулятор скорости в качестве встроенной опции. Электродвигатели переменного тока могут иметь данную опцию только с внешним контролером (преобразователь частоты). Преобразователь частоты изменяют амплитуду и частоту напряжения, поступающего на электродвигатель, генерируя тем самым высшие гармоники, которые отрицательно сказываются на электрической машине, способствуя ее перегреву, и, как следствие, снижению срока службы.

Коммутационные схемы принимают входы с широтно-импульсной модуляцией от 4 до 20 мА и от 0 до 10 В. Это позволяет управлять скоростью в диапазоне от 10% до 100%. Мониторинг двигателей EC с помощью интегральной схемы прост, и может быть легко доступен разработчику для обеспечения обратной связи. Наконец, двигатели EC обеспечивают плавный пуск, снижение шума и более низкую температуру двигателя.

Электрические машины с электронным управлением обычно используются для приложений малой мощности, таких как небольшие вентиляторы, сервомоторы и системы управления движением. Однако, благодаря последним достижениям в области электроники и химии, двигатели EC находят свой путь в более крупные производственных приложениях, до 12 кВт и выше.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T – время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота  f – величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

f = 1/T

Циклическая частота  ω – угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза  ψ – величина угла от нуля (ωt = 0) до начала периода.
Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение – величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t);   u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = Iampsin(ωt);   u = Uampsin(ωt)

С учётом начальной фазы:

i = Iampsin(ωt + ψ);   u = Uampsin(ωt + ψ)

Здесь Iamp и Uamp – амплитудные значения тока и напряжения.

Амплитудное значение – максимальное по модулю мгновенное значение за период.

Iamp = max|i(t)|;   Uamp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) – максимальное отклонение от нулевого значения.

Среднее значение (avg) – определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение – среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) – определяется как квадратный корень из среднеарифметического квадратов всех
мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой Iamp (Uamp)
среднеквадратичное значение определится из расчёта:

Среднеквадратичное – это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов.
Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода,
что и равный по величине его среднеквадратичному значению постоянный ток.

Напряжение в цепях постоянного тока

В таких цепях значение описываемой характеристики в течение длительного времени остается постоянным. Постепенное изменение значения данной характеристики при подключении потребителей (нагрузки) к батарее связано с ее разрядкой – уменьшением разности потенциалов между клеммами источника питания вследствие перемещения большего количества носителей зарядов с положительной клеммы на отрицательную.

Ток и напряжение в данном случае связаны законом Ома, формула которого приведена ниже:

I = U/R,

где:

  • I – сила тока, А;
  • U – разность потенциалов, В;
  • R – сопротивление, Ом.

Треугольник Ома – удобная форма формулы одноименного закона

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Напряжение в цепях постоянного тока

Как течет ток

В таких цепях значение описываемой характеристики в течение длительного времени остается постоянным. Постепенное изменение значения данной характеристики при подключении потребителей (нагрузки) к батарее связано с ее разрядкой – уменьшением разности потенциалов между клеммами источника питания вследствие перемещения большего количества носителей зарядов с положительной клеммы на отрицательную.

Ток и напряжение в данном случае связаны законом Ома, формула которого приведена ниже:

I = U/R,

где:

  • I – сила тока, А;
  • U – разность потенциалов, В;
  • R – сопротивление, Ом.


Треугольник Ома – удобная форма формулы одноименного закона

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Характерные значения и стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1—2 мВ
Телевизионная антенна Переменное высокочастотное 1—100 мВ
Гальванический цинковый элемент типа АА («пальчиковый») Постоянное 1,5 В
Литиевый гальванический элемент Постоянное 3—3,5 В (в исполнении пальчикового элемента, на примере Varta Professional Lithium, AA)
Логические сигналы компьютерных компонентов Импульсное 3,5 В; 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 5 В, 12 В
Электрооборудование автомобилей Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36—42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в бытовых электросетях России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6—20 кВ 6,6—22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10—35 кВ
На аноде кинескопа Постоянное 7—30 кВ
Статическое электричество Постоянное 1—100 кВ
На свече зажигания автомобиля Импульсное 10—25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10—20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой слоя трансформаторного масла толщиной 1 см 100—200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50—500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

Генерирование переменного тока[править]

Простейший генератор переменного тока: если вокруг проволочной катушки, намотанной на магнитопровод из трансформаторной стали вращать маховик с установленными в нём несколькими парами постоянных магнитов, то в катушке (условно показан один виток) будет наводиться синусоидальная ЭДС, а при подключении нагрузки в электрической цепи появится переменный ток.Применяется на транспортных средствах (мопеды, лёгкие мотоциклы, снегоходы, гидроциклы, а также на подвесных лодочных моторах), работает совместно с выпрямителем и регулятором напряжения (см. магдино).

Основная статья: Генератор переменного тока

Принцип действия генератора переменного тока основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Электродвижущая сила генератора переменного тока определяется по формуле:

, где

 — количество витков;

 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

 — длина каждой из активных сторон контура в метрах;

 — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре;

 — фаза синусоидальной электродвижущей силы.

Частота переменного тока, вырабатываемого генератором, определяется по формуле:

, где

 — частота в герцах;

 — число оборотов ротора в минуту;

 — число пар полюсов.

По количеству фаз генераторы переменного тока бывают:

  • трёхфазные генераторы — основной тип мощных промышленных генераторов;См. также трёхфазная система электроснабжения, трёхфазный двигатель, автомобильный генератор трёхфазного переменного тока.
  • однофазные генераторы, применяются, как правило, на маломощных бензиновых электростанциях, встроены в двигатели внутреннего сгорания мопедов, лёгких мотоциклов, снегоходов, гидроциклов, подвесные лодочные моторы;См. также конденсаторный двигатель, однофазный двигатель.
  • двухфазные генераторы, встречаются значительно реже по сравнению с однофазными и трёхфазными.См. также двухфазная электрическая сеть, двухфазный двигатель.

Модифицированная синусоида, генерируемая инвертором.

Инверторыправить

Постоянный ток может быть преобразован в переменный с помощью инвертора.

Следует отметить, что недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида. Для получения синусоидального тока инвертор должен иметь задающий генератор (как правило, специализированная микросхема, формирующая электрический сигнал синусоидальной формы, который затем управляет работой тиристорных или транзисторных электронных ключей.

Фазорасщепительправить

Трёхфазный ток может быть получен из однофазного при помощи фазорасщепителя. Эти электрические машины применяются, в частности, на электровозах, таких как ВЛ60, ВЛ80.

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

Как рассчитывать трехфазное напряжение

Промышленная передача электроэнергии использует три симметрично расположенных по времени синусоиды напряжения, которые вырабатывают генераторы. 

Три обмотки их ротора разнесены между собой на 120 градусов и вращаются в магнитном поле статора, поочередно пересекая его силовые линии. Поэтому у них наводится таким же образом смещенная электродвижущая сила. 

Синусоиды сдвинуты между собой на такой же угол, как показано правее. Их векторное выражение на комплексной плоскости тоже отображается с углом 120О. 

При этом формируется система линейных и фазных напряжений, показанная на картинке. 

Между всеми линейными проводами образуется разность потенциалов в 380 вольт. В то же время относительно каждого этого проводника и нулем присутствует так нам привычное 220. 

Такая система постоянно работает в сбалансированном режиме: токи однофазных потребителей циркулируют по своим замкнутым цепочкам, постоянно складываясь в нулевом проводнике. Сложение это не чисто арифметическое, а векторное, учитывающее направление потока энергии. 

Поэтому при геометрическом сложении векторов происходит снижение тока в проводе нуля и его, как правило, делают тоньше, чем остальные жилы.  

Формулы электрического напряжения для линейных и фазных величин, а также токов смотрите прямо на картинке. 

Определение величины напряжения

Выполняя электромонтажные работы, специалист сталкивается с разными типами напряжения. Например, розетки в квартирах и частных домах являются источниками переменного напряжения. Оно может быть понижено или повышено трансформатором, выпрямлено специальным устройством. Измерение напряжения трения производят в лабораторных условиях электрохимическим методом. Мастеру нужно знать об особенностях измерения разных видов напряжения.

Постоянное напряжение

Его можно измерить, используя магнитоэлектрические устройства. Сейчас в продаже можно найти высокоточные приборы, оснащенные цифровым дисплеем. Проще всего непосредственно подключить устройство к участку, на котором нужно провести измерения. При этом необходимо соблюдать следующие правила:

  1. Предельное значение должно превышать предполагаемый максимум. В случае, когда измерительные работы выполняются без знания этого параметра, полагается установить максимальный предел и постепенно снижать его.
  2. Учитывать полярность подсоединения. В противном случае у стрелочного прибора указатель наклонится в противоположную сторону, у цифрового – на экране высветится отрицательное число.

Лабораторный вольтметр

Переменное напряжение

В этом случае в ход идут измерительные приборы разных видов, за исключением магнитоэлектрических. Работают с такими аппаратами только посредством подключения к выходу выпрямителя.

Переменный ток

Термин поясняет особенности одного из разновидностей электрического тока, который постоянно меняется с течением времени. Изменения происходят как по величине абсолютный показателей, так и по направлению. Как частный случай, возможны изменения только по величине, при сохранении неизменным направления колебательного движения в электрической цепи. Такой ток (переменный) повсеместно используется в осветительной сети бытового назначения, жилых домов, а также на многочисленных объектах промышленного назначения.

Если у постоянного тока электроны всегда движутся в одном направлении, то для переменного тока характерно многократное изменение не только направления, но и значений (несколько раз за единицу времени). Все такие изменения происходят в соответствии с одним законом – гармоническим. На картинке, отображаемой с помощью осциллографа такую картинку можно увидеть в форме четкой, геометрически точной синусоиды

Важно понимать, что переменный ток является алгебраической величиной, поэтому указывать его знак можно только с учетом конкретного мгновенного значения (с учетом того, в каком направлении осуществляется движение электронов в конкретный момент времени)

Определение действующего (эффективного) значения

Действующее (эффективное) значение напряжения

— (по определению) такое напряжение постоянного тока, которое на такой же резистивной нагрузке выделит такую же мощность, как измеряемое переменное напряжение. Соответственно,действующее (эффективное) значение силы тока — (по определению) такое значение силы постоянного тока, при прохождении которого через резистивную нагрузку выделится такую же мощность, что и при прохождении измеряемого тока.

В общем случае действующее напряжение равно среднеквадратичному значения напряжения за период. То есть:

Первая формула — действующее напряжение, вторая — действующая сила тока. Где, Т

— период напряжения или тока.U(t) — зависимость напряжения от времени.I(t) — зависимость силы тока от времени.

Для сигналов произвольной формы считать надо именно по этим формулам, но для некоторых стандартных форм напряжения или тока расчеты уже проведены (эти формулы верны как для напряжения, так и для силы тока):

Применение закона Ома на практике

На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.

  Онлайн калькулятор для определения величины сопротивления  
  Напряжение, В:  
  Величина тока, А:  
  

Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

Происхождение переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне. Так родился источник постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока постепенно заменили аккумуляторную систему постоянного тока Edison, потому что переменный ток безопаснее переносить на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного применения магнетизма вдоль проволоки ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному, но когда ориентация магнита была перевернута, электроны также поворачивались.