Датчики весоизмерительные тензорезисторные sierra

Содержание

1) Проверка сопротивления изоляции.

Для выполнения данного теста, необходимо подключить мегомметр к кабелю тензодатчика и проверить на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Для проверки тензометрических цепей Keli допускается применение мегомметра напряжением не более 50В постоянного тока.

Для функционирующего тензодатчика значение снятых замеров не должно быть ниже 5 Мом. Если значение сопротивления изоляции меньше 1кОм – это свидетельствует о явном коротком замыкании. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями (тензорезисторами), а также в кабеле. При коротком замыкании в кабеле, его можно заменить, если это предусматривает конструкция тензодатчика.

Примеры использования тензометрических датчиков

  • элемент конструкции весов.
  • измерение усилий деформации при обработке металлов давлением на штамповочных прессах и прокатных станах.
  • мониторинг напряженно-деформационных состояний строительных конструкций и сооружений при их возведении и эксплуатации.
  • высокотемпературные датчики из жаропрочной легированной стали для металлургических предприятий.
  • с упругим элементом из нержавеющей стали для измерений в химически агрессивной среде.
  • для измерения давления в нефте и газопроводах.

Простота, удобство и технологичность тензодатчиков – основные факторы для дальнейшего активного их внедрения, как в метрологические процессы, так и использования в повседневной жизни в качестве измерительных элементов бытовой техники.

Характеристики тензорезисторов

База — длина проводника решетки (0 ,2—150 мм). Номинальное сопротивление R — величина активного сопротивления (10 —1000 Ом). Рабочий ток питания Ip — ток, при котором тензорезистор заметно не нагревается. При перегреве изменяются свойства материалов чувствительного элемента, основы и клеевой прослойки, искажающие показания. Коэффициент тензочувствительности: s = ( ∆R/R)/ ( ∆L/L), где R и L — соответственно электрическое сопротивление и длина ненагруженного датчика; ∆R и ∆L — изменение сопротивления и деформация от внешнего усилия. Для разных материалов он может быть положительным (R при растяжении возрастает) и отрицательным (R увеличивается при сжатии). Величина s для разных металлов изменяется в пределах от -12,6 до +6.

Назначение и классификация

Что такое тензодатчик? Тензометрические датчики были разработаны для использования в составе высокоточного измерительного оборудования. В задачи тензодатчика входит выполнение функций преобразователя для переработки физической величины измеряемого веса в электрический сигнал. Позже этот сигнал также передается на последующее преобразование, которым может заниматься весовой индикатор или процессор. Основным предметом замеров тензометрического датчика является степень деформации объекта в момент, когда его структура нарушается и перестраивается для оказания сопротивления внешней силе, что влияет на него. Датчик улавливает колебания объекта от этого процесса и преобразует их в цифровые сигналы.

Таким образом, тензометрический датчик, применим для целого спектра измерительных задач:

  • Измерение веса.
  • Замеры степени ускорения
  • Контроль перемещения объекта.
  • Замеры крутящего момента.
  • Замеры давления.

Пригодность отдельно взятой модели замерочного устройства для какой-либо из перечисленных задач зависит от его архитектуры и назначения. По последним параметрам тензометрические датчики делятся на:

  • S-образные датчики получили свое название из-за формы корпуса. Их принцип действия включает в себя как реакцию на сжатие объекта измерения, так и на растяжение. В большинстве приборов этот тип тензодатчиков работает именно по последнему принципу.
  • Одноточечные виды в своей конструкции несут всего один датчик замер, который располагается строго по центру платформы. Это делает их одной из самых доступных разновидностей на рынке, встречающейся в торговых и вагонных весах, а также в дозаторах.
  • Колонные тензометрические датчики получили корпуса в виде колонн, которые позволяют им мониторить объект во время его сжатия. Наличие в их конструкции опорных поверхностей позволяет изделию самостоятельно возвращаться в исходное положение после проведения замер. Отличаются применением на весах с высокой грузоподъемностью, позволяя замерять вес крупных транспортных средств.
  • Цилиндрические используются для измерения реакции объекта на сжатие. Не самый богатый функционал этого типа объясняется отсутствием степеней свободы качения. Цилиндрические датчики полезны в вагоноизмерительных весах, т.к. могут работать с большими массами.
  • Мостовые представлены в виде статично закрепленной балки, на центр которой вешается груз. Встретить такие датчики можно в весах для небольших транспортных средств.
  • Балочные. Подобно мостовым, конструкция тензодатчика представлена балкой на неподвижной опоре. Однако, в отличие от аналога, в балонных устройствах основная нагрузка приходится на конец балки.
  • Миниатюрные тензодатчики разработаны для использования в условиях ограниченного пространства и являются самой мобильной разновидностью. Часто применяются в лабораторных условиях и на испытательных стендах.

Датчики давления

Применяются для измерения давления. Классическим примером служит использование в фундаментной плите, или ростверке опоры. Правильным является установка датчика в процессе заливки фундамента, а не после. Информация от датчика давления дает представление о штатных нагрузках на точку приложения силы. При каких-либо изменениях мы получим график значений отклонения параметров от нормальных. К примеру, вся конструкция сооружения по другим параметрам никак не реагирует на обледенение и выпад снега на кровлю, однако общая масса возросла и давит на опоры фундамента. Если опоры не выдержат, то здание обрушится. Поэтому стоит всегда получить значения давления для проектируемых условий эксплуатации конструкций и потом сравнивать с текущими.

Схема подключения

Как работает тензодатчик мы разобрались. Теперь следует ознакомиться со схемой подключения. Блок схема устройства, которое считывает сигнал, изображена на рисунке ниже. На ней вы видите один из вариантов усиления и преобразования сигнала с датчика.

Если рассмотреть тензорезистивный датчик, то реально он представляет собой мост из резисторов, включённый следующим образом. Такая схема включения называется «Мост Уинстона» или измерительный мост.

Для его работы недостаточно подключить лишь сигнальные провода, нужны еще и провода питания. В некоторых сложных системах могут подключаться еще и провода для термостабилизации или других функций.

На видео подробно рассказывается, что собой представляют тензометрические датчики и как они работают:

Современные тензометрические датчики в зависимости от своего назначения могут использоваться в установках для измерения от долей грамм до сотен тон. Соответственно для каждого диапазона весов подбираются тензодатчки определённой конструкции и типа чувствительного элемента. Кроме измеряемых весов немаловажную роль в выборе контрольно-измерительной аппаратуры играет и условия, в которых они будт работать, а также требуемый класс точности.

Материалы по теме:

Устройство и принцип работы

Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.

В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.

Тактильные

Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.

Механические

Измерения основаны на фиксации изменения длины объекта под нагрузкой. Работа механического тензометра заключается в определении зависимости удлинения тела от напряжения в поперечном сечении.

Резистивные

Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.

Струнные

Струнный вариант представляет собой стальную проволоку (струну), её натягивают между опорами, которые закрепляют на поверхности объекта. Суть измерений заключаются в определении отношения частоты колебания струны к степени её натяжения при изменении длины обследуемого тела под воздействием нагрузки.

Индуктивные

Устройство прибора основано на применении катушки индуктивности, в которой установлен подвижный сердечник. Он напрямую контактирует с поверхностью объекта. При малейшей деформации поверхности происходит смещение сердечника в катушке. Изменяющиеся параметры катушки индуктивности фиксируются через электросхему прибором.

Пьезорезонансные

Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.

Пьезоэлектрические

По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.

Магнитные

Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.

Емкостные

Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.

Измерительный усилитель AME2

Измерительный усилитель AME2 предназначен для преобразования слабых сигналов тензодатчиков в нормированные сигналы тока или напряжения. Компактное исполнение усилителя AME2 позволяет его использование в тесном пространстве, в т.ч. в коммутационных шкафах. Для установки точки нуля и коэффициента усиления AME оснащен 2 (для грубой и точной подстройки) потенциометрами с 22 оборотами каждый. Наряду с выходом по напряжению с быстрым временем реакции имеется также «приглушенный» выход, который может использоваться, например, для подключения индикации. Характеристика фильтра (время нарастания сигнала) между 50 мс и 2 сек. может регулироваться потенциометром. Опции C и N предусматривают наличие токового выхода, характеристика фильтра которого соответствует «быстрому» выходу по напряжению. В вариантах опций CD и ND выход работает через фильтр с регулируемой скоростью (50 мс — 2 сек) нарастания сигнала. Подключение вспомогательной энергии имеет защиту от переполярности. Выходы усилителя гальванически развязаны от проводов питания. Конструкция зажимов делает возможным простое подсоединение проводов и упрощенный поиск неисправностей.

  • Выход с бесступенчатой регулировкой характеристики нарастания сигнала
  • Гальваническая развязка
  • Штекерная клеммная колодка
  • Удобство установки параметров усилителя с лицевой панели прибора

Принцип работы тензодатчиков

Во многих отраслях промышленности необходимо измерение размера деформации. Для таких целей применяется тензорезисторы, который помогает преобразовать уровень деформации в определенную электрическую величину. Благодаря этому можно определить её значение.

Тензодатчики – это устройства, которые могут преобразовать механическую деформацию тела в электрический сигнал, который позволяет определить уровень растяжения и сжатия конкретного предмета. Он является резистивным преобразователем и считается одним из главнейших составляющих высокоточного оборудования.

Устройство изготовлено из чувствительного тензорезистора, который производится из тензоматериалов. Чаще всего это фольга или алюминиевая проволока с небольшим сечением. тензодатчик шайбового типа

Бывают самые разные датчики, которые могут использоваться в любых отраслях: атомной, фармацевтической, металлургической и прочих. Виды тензодатчиков:Приборы для измерения нагрузки и силы (динамометры);Измерители давления;Тензодатчики крутящего момента для автомобильных и станочных двигателей.

Тензорезисторы классифицируются не только по своей форме, но и по конструктивным особенностям. Конструкция прибора зависит от типа чувствительного элемента. Для контроля деформации используются следующие типы тензорезисторов:Фольговые;Пленочные;Проволочные.

Пленочные являются аналогом фольговых, за исключением материала, из которого изготовлены. Производители изготавливают такие модели из тензочувствительных пленок с особым напылением, которое увеличивает чувствительность системы. Такие измерительные узлы удобно использовать при необходимости измерить динамические нагрузки. Производство пленок выполняется из таких материалов, как титан, висмут, германий.Проволочные способны измерить нагрузку от нескольких сотых грамма до целых тонн (скажем, весовой бункер и прочие). Их называют одноточечные, т. к в отличие от пленочных и фольговых моделей, они измеряют в одной точке, а не площади. Такая конструкция позволяет использовать проволочные тензодатчики для измерения деформации сжатия и растяжения.проволочная модель

Конструктивно прибор представляет собой тензорезистор с контактным элементом. Он закреплен на верхней панели устройства, которая соприкасается с измеряемым телом. Принцип работы любого тензодатчика основан на воздействии на чувствительный элемент определенной детали. Для включения датчика в сеть применяется специальные электрические отводы, которые подключаются к чувствительной пластине. Благодаря этому в контактном элементе наблюдается постоянное напряжение. Но, при работе датчика на специальную подложку устанавливается деталь. Её вес разрывает цепь и образовывается механическая деформация, которая при помощи контрольных контактов преобразуется в электрический сигнал.

Измерительный мост тензодатчика позволяет измерить наименьшие нагрузки, благодаря чему значительно расширяется использование прибора. Мостовая схема подключения тензометрического датчика основана на законе Ома, при котором если все сопротивления имеют равное значение, то ток, проходящий через резисторы, также будет иметь одинаковое значение. Здесь воздействие из вне принято называть «внешним фактором», а преобразование сигнала – «внутренним». Тогда принцип действия основан на анализе внешнего фактора при помощи внутреннего.

Принцип установки весовых тензодатчиков наглядно демонстрируют модули, которые обычно используют при изготовлении электронных или цифровых весов. В них установлены специальные модули, которые соединены с рабочей поверхностью весов.

Этот измерительный модуль обладает чрезвычайно высокой точностью взвешивания и защищает тензодатчик от повреждений

  • Высокая точность измерения;
  • Подходят для измерения статических и динамических напряжений, при этом, не искажают полученные данные. Это очень удобно при использовании устройств в транспортных средствах или экстремальных условиях работы;Небольшие размеры позволяют использовать такие датчики практически в любых измерительных устройства.

Разработка сайта Sigmasoft

2020 Тензодатчики веса | Датчики силы, крутящего момента, давдения, премещения | Тензорезисторы | Промышленные контроллеры НВМ

Классификация тензометрического оборудования

Все тензооборудование можно поделить на классы, характеризующие сложность и уровень вложенности технического устройства:

Тензорезистор. Является базовой единицей тензометрического оборудования. Именно на основании его измерений строится весь последующий цикл работ. При этом сам тензорезистор в большинстве случаев не является полноценным измерительным прибором и для того, чтобы он начал работать, требуется тензодатчик.
Тензодатчик. Это первичный прибор измерения. Представляет собой тензорезистор в специальном корпусе, который изменяет свою форму в соответствии с требованиями к его работе. Корпус сделан из специальной стали, которая обеспечивает достаточную пружинистость, возвращаемость тензорезистора в исходное положение и линейность показаний. Качество корпуса тензодатчика — это один из самых главных критериев работоспособности тензометрического оборудования. Достаточно сказать, что именно состав и марку стали корпуса держат в секрете все производители тензометрических датчиков, а не его устройство.
Терминал. Вторичный прибор учета, преобразующий выходной сигнал с тензодатчиков в результат измерения и выводящий его на цифровое табло. Терминал может работать в ограниченном диапазоне точности, как и тензодатчики, поэтому необходимо подбирать модель, которая будет правильно интерпретировать показания измерительного устройства. Цифровые терминалы вообще привязаны к нескольким видам датчиков через протокол передачи данных и не могут быть использованы в других измерительных системах. Равно как и наоборот.
Измерительное устройство. Это комплекс промышленного оборудования, состоящий из тензодатчиков, грузоприемной платформы и терминала, установленный на конкретном объекте — весах, дозаторе, динамометре, машине, прессе. При этом измерительное устройство является единственным видом измерительной техники, которая сертифицируется на измерение массы груза. Нельзя группу тензодатчиков назвать весами, если она не прошла поверку и калибровку даже в том случае, если сертифицированы датчики и терминал.
Периферийное оборудование. Сюда относятся выносные табло, видеокамеры фиксации результатов взвешивания, программное обеспечение. Они расширяют возможности тензометрического оборудования, но напрямую в процессе измерения не участвуют.

Тензометрический датчик: принцип действия

Основным элементом устройства является тензорезистор, закрепленный на упругой конструкции. Тензодатчики калибруют, ступенчато нагружая заданным возрастающим усилием и измеряя при этом величину электрического сопротивления. Затем по его изменению можно будет определить значения приложенной неизвестной нагрузки и пропорциональной ей деформации.

В зависимости от типа датчики позволяют измерить:

  • силу;
  • давление;
  • перемещение;
  • крутящий момент;
  • ускорение.

Даже при самой сложной схеме нагружения конструкции действие на тензорезистор сводится к растяжению или сжатию его решетки вдоль длинного участка, называемого базой.

Какие применяются тензометрические датчики

Больше всего распространены типы тензометрических датчиков с изменением активного сопротивления при механическом воздействии — тензорезисторы. Проволочные тензорезисторы Наиболее простым примером является прямолинейный отрезок тонкой проволоки, который крепят на исследуемой детали. Его сопротивление составляет: r = pL/s, где p — удельное сопротивление, L — длина, s — площадь сечения. Вместе с деталью упруго деформируется наклеенная проволока. При этом меняются ее геометрические размеры.

При сжатии поперечное сечение проводника увеличивается, а при растяжении — уменьшается. Поэтому изменение сопротивления меняет знак в зависимости от направления деформации. Характеристика является линейной. Низкая чувствительность тензорезистора привела к необходимости увеличения длины проволоки на небольшом участке измерения. Для этого его делают в виде спирали ( решетки) из проволоки, оклеенной с обеих сторон пластинками изоляции из пленки лака или бумаги.

Для подключения к электрической цепи устройство снабжено двумя медными выводными проводниками. Они привариваются или припаиваются к концам проволочной спирали и достаточно прочны, чтобы подключиться к электрической схеме. Тензорезистор крепится на упругом элементе или исследуемой детали с помощью клея.

Проволочные тензодатчики имеют следующие достоинства:

  • простота конструкции;
  • линейная зависимость от деформации;
  • небольшие размеры;
  • малая цена.

К недостаткам относятся низкая чувствительность, влияние температуры среды, потребность в защите от влаги, применение только в области упругих деформаций. Проволока будет деформироваться в том случае, когда сила сцепления с ней клея значительно превосходит усилия, требуемые для ее растяжения. Отношение поверхности склеивания к площади поперечного сечения должно быть 160 к 200, что соответствует ее диаметру 0,02—0,025 мм. Допускается его увеличение до 0,05 мм. Тогда при нормальной работе тензорезистора клеевой слой не разрушится. Кроме того, датчик хорошо работает на сжатие, поскольку нити из проволоки составляют одно целое с пленкой клея и деталью.

Тензодатчики из фольги

Параметры и принцип действия фольгового тензодатчика те же самые, что и у проволочных. Только материалом является фольга из нихрома, константана или титан-алюминия. Технология изготовления методом фотолитографии позволяет получить сложную конфигурацию решетки и автоматизировать процесс.

По сравнению с проволочными, фольговые тензометрические датчики более чувствительны, пропускают больший ток, лучше передают деформацию, имеют более прочные выводы и сложней рисунок.

Полупроводниковые тензодатчики

Чувствительность датчиков приблизительно в 100 раз выше проволочных, что позволяет часто применять их без усилителей. Недостатками являются хрупкость, большая зависимость от окружающей температуры и значительный разброс параметров.

Возможно, вам также будет интересно

Отсутствует цепь для отвода тока смещения при связи по переменному току Одна из наиболее распространенных ошибок при применении связи по переменному току в схемах с операционными или инструментальными усилителями — это отсутствие цепи постоянного тока для стекания тока смещения. На рис. 1 включение последовательно с неинвертирующим входом (+) ОУ конденсатора для связи по переменному току

Разработчики часто используют линейные стабилизаторы напряжения на выходе импульсных стабилизаторов. У такого подхода много преимуществ — лучшие стабильность, точность и быстродействие, а также меньше выходной импеданс. В идеале все эти улучшения должны были бы сопровождаться значительным уменьшением пульсаций и выбросов, порождаемых импульсным стабилизатором. На практике, однако, подавление этих пульсаций в линейном стабилизаторе вызывает некоторые трудности,

Корпорация Keysight Technologies (ранее Agilent Technologies) продолжает радовать пользователей своими инновационными разработками. Так, 4 марта 2014 года она объявила о выходе новейшей серии многофункциональных генераторов 33600A с патентованной технологией Trueform, обеспечивающей исключительную чистоту сигналов и улучшенную их форму . Уровень гармонических искажений синусоидальных сигналов в 5 раз ниже обычного, а уровень джиттера в 100 раз ниже, чем у аналогичных приборов, выполненных по технологии DDS (прямой цифровой синтез).

Погрешности инструментального усилителя

На рис. 5 показаны типичные источники
погрешностей при подключении датчика
к схеме усиления и формирования сигнала.
Ток смещения входа инструментального уси
лителя протекает через резисторы тензомос
та. Любой разбаланс сопротивлений тензо
моста или ток смещения входа усилителя
приводит к появлению погрешности смеще
ния. Эта погрешность, умноженная на коэф
фициент усиления, появляется на выходе.
Кроме того, напряжение смещения и ток сме
щения зависят от температуры. Другие важные источники погрешностей — это точность
установки коэффициента усиления усилите
ля, нелинейность усилителя и шум. Для сис
темы с мостовым тензодатчиком требуется
усилитель, обладающий высокими значени
ями точности установки коэффициента уси
ления, низким током смещения, малым дрей
фом напряжения смещения и малым дрей
фом тока смещения.


Рис. 5. Источники погрешностей усилителя

Как подключить

Подключение тензодатчика легко выполняется своими руками в соответствии с простой инструкцией. Важную роль в процессе играет длина кабеля подключения, которую нужно учитывать ещё на стадии подбора датчика. Может потребоваться усилитель в виде контроллера SE 01, который уменьшит погрешность измерений в случае, если потребуется увеличивать размеры контакта для подключения. Провода самих датчиков должны быть заземлены с помощью блока для разветвления, устанавливаемого в одной точке, где они все пересекаются. Данная мера обязательна для предотвращения возможного замыкания.

Схема для подключения тензодатчика достаточно проста и подразумевает соединение контактов устройства с измерительным прибором в соответствии с их значениями, описанными на рисунке выше. Кабель, которым монтируется прибор, также нуждается в обязательном экранировании.

После подключения останется провести проверку и калибровку тензометрического датчика. Последняя выполняется одним из двух методов — стандартным или электронным. При первом пользователь записывает значения датчика при нулевой загрузке, после чего устанавливает на весы предмет с эталонным весом, который также вписывается в качестве штатного показателя. Электронный вариант подразумевает ручной ввод минимального и максимального допустимого веса.

Принцип работы электронных весов на основе Arduino

Основным компонентом нашего проекта является датчик веса и модуль усиления HX711 для него. Внешний вид датчика веса показан на рисунке ниже. Как вы можете видеть, на его торце стоит отметка 10 кг. Также вы можете заметить слой защитного клея сверху датчика и 4 выходящих из датчика провода различного цвета. Более подробно назначение этих компонентов датчика будет рассмотрено далее в статье.

Датчик веса представляет собой устройство, которое преобразует приложенные к нему силу или давление в электрический сигнал. Он состоит условно из двух сторон, назовем их правой и левой стороной. Они сделаны из алюминиевых блоков. Как вы видите из представленной картинки, в центре датчика просверлено достаточно большое отверстие. Это и есть та часть датчика, которая испытывает деформацию при приложении к датчику усилия (груза). Теперь представьте, что правая сторона датчика закреплена на основании, а к левой стороне приложено усилие (груз) – эта ситуация приводит к деформации датчика нагрузки вследствие наличия огромного отверстия в его центре.

Когда груз помещается на левую сторону датчика, то на верхнюю сторону датчика действует сила растяжения, а на его нижнюю сторону – сила сжатия. Поэтому брусок алюминия, из которого сделан датчик, начинает сгибаться вниз на левой стороне. Если мы измерим эту деформацию, мы сможем определить силу, приложенную к алюминиевому блоку и, следовательно, исходя из ее значения, и вес груза, находящегося на датчике.

Мы можем сделать это с помощью так называемого моста Уитстона (Wheatstone bridge). Мы соединяем измерители деформации (strain gauge) в моста Уитстона, если мост сбалансирован, то напряжение в его средней точке будет равно нулю. Когда сопротивление одного из измерителей деформации изменяется, это приводит к дисбалансу моста, и напряжение в нем также изменяется. Таким образом, мост Уитстона позволяет преобразовывать изменения сопротивления в значения напряжения.

Но эти изменения напряжения слишком малы чтобы непосредственно подавать их на плату Arduino, поэтому мы сначала подаем их на модуль усиления HX711. Модуль HX711 содержит в своем составе 24-битный дифференциальный АЦП (аналого-цифровой преобразователь), что позволяет ему измерять очень малые изменения напряжения. Диапазон значений на выходе подобного АЦП составляет от 0 до 224.

Тензорезистивный метод

Сейчас это наиболее удобный и чаще других используемый метод. При деформации электропроводящих материалов (металлов, полупроводников) происходит изменение их удельного электрического сопротивления и, как следствие, — изменение сопротивления чувствительного элемента датчика. В качестве проводящих материалов обычно используются металлические плёнки, напылённые на гибкую диэлектрическую подложку. В последнее время находят применение полупроводниковые датчики. Сопротивление чувствительного элемента измеряется тем или иным способом.

Конструкция типичного металлического датчика

Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.

На диэлектрическую подложку (например, полимерную плёнку или слюду) в вакууме через напыляют плёнку металлического сплава, либо формируют проводящую конфигурацию на подложке фотолитографическими методами. В последнем случае на предварительно напылённую сплошную плёнку металла на подложке наносят слой фоторезиста и засвечивают его ультрафиолетовым излучением через фотошаблон. В зависимости от вида фоторезиста, либо засвеченные, либо незасвеченные участки фоторезиста смываются растворителем. Затем незащищённую фоторезистом металлическую плёнку растворяют (например, кислотой), формируя фигурный рисунок металлической плёнки.

В качестве материала плёнки обычно используются сплавы, имеющие низкий температурный коэффициент удельного сопротивления (например, манганин) — для снижения влияния температуры на показания тензометра.

При использовании тензорезистор подложкой приклеивают к поверхности исследуемого на деформации объекта или поверхности упруго-деформируемого элемента в случае применения в весах, динамометрах, торсиометрах, датчиках давления и др., так, чтобы тензорезистор деформировался вместе с деталью.

Чувствительность к деформации такого тензорезистора зависит от направления приложения деформирующей силы. Так, наибольшая чувствительность при растяжении и сжатии — по вертикальной по рисунку оси и практически нулевая при горизонтальной, так как полоски металла в зигзагообразной конфигурации сильнее изменяют своё сечение при вертикальной деформации.

Тензорезистор включается с помощью электрических проводников во внешнюю электрическую измерительную схему.

Измерительная схема

Измерительный мост с вольтметром в диагонали. Тензорезистор обозначен Rx.

Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного напряжения (диагональ моста A—D). С помощью переменного резистора R2 производится балансировка моста, так, чтобы в отсутствии приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.

При выполнении соотношения R1 / R2 = Rx / R3 напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx и R3 (B) и изменение напряжения диагонали B—C моста — полезный сигнал.

Изменение сопротивления Rx может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.

Например, в схеме на рисунке вместо постоянного резистора R3 включают такой же тензорезистор, как и Rx, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления (вызванного изменением температуры) равны, и температурный уход при этом компенсируется.

Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие сервисные функции.

Схемы включения тензометрических датчиков

Для измерения малых электрических сигналов наилучшим вариантом является мостовое включение, в центре которого находится вольтметр. Простейшим примером будет тензометрический датчик, схема которого собрана по принципу электрического моста, в одно из плеч которого он подключен. Его сопротивление в ненагруженном состоянии будет таким же, как и у остальных резисторов. В этом случае прибор покажет нулевое напряжение.

Принцип работы тензометрического датчика заключается в увеличении или снижении величины его сопротивления в зависимости от того, будут усилия сжимающими или растягивающими.

На точность показаний значительное влияние оказывает температура тензорезистора. Если в другое плечо моста включить аналогичное тензосопротивление, которое не будет нагружаться, оно будет выполнять функцию компенсационного при тепловых воздействиях.

В измерительной схеме также должны учитываться значения электрических сопротивлений проводов, подключенных к резистору. Их влияние уменьшается за счет добавления еще одного провода, подключенного к какому-либо выводу тензорезистора и вольтметру.

Если на упругий элемент наклеить оба датчика таким образом, чтобы их нагрузки отличались по знаку, сигнал усилится в 2 раза. При наличии в схеме четырех датчиков с нагрузками, обозначенными на схеме выше стрелками, чувствительность значительно возрастет. При таком подключении проволочных или фольговых тензорезисторов обычный микроамперметр даст показания без усилителя электрических сигналов

Важно точно подобрать номиналы сопротивлений с помощью мультиметра, чтобы они были равны между собой в каждом плече электрического моста