Выбор размеров окна сердечника и укладка обмоток на стержнях трансформатора
Форма окна сердечника трансформатора оказывает значительное влияние на величину намагничивающего тока, расход стали на сердечник и меди на обмотки трансформатора. Излишняя высота окна сердечника H повышает намагничивающий ток Iμ и увеличивает расход стали и вес трансформатора. Заниженная высота окна повышает нагрев обмотки и увеличивает расход меди на них.
Как показывает опыт, наивыгоднейшая форма окна сердечника трансформатора получается при отношении высоты окна H к его ширине b в пределах 2,5 – 3 (рисунки 2, 3 и 4).
Если при расчете сердечника трансформатора принята стандартная форма П-образных или Ш-образных пластин из таблицы 2, то размеры H и b берутся из этой же таблицы.
При расположении обмоток на стержнях сердечника трансформатора нужно иметь в виду следующее: чем меньше диаметр обмоточного провода, тем выше его стоимость. Поэтому для уменьшения общей стоимости трансформатора целесообразно обмотку с более тонким проводом располагать на стержне первой.
Для уточнения ширины окна сердечника b необходимо вычислить радиальную толщину обмоток трансформатора.
Число витков первичной обмотки в одном слое:
где d1н – берется из позиции 5; ε1 – расстояние от обмотки до ярма, обычно ε1 = 2 – 5 мм.
Число слоев первичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):
Полученное значение m1 округляется до ближайшего большего целого числа.
В случае однофазного двухкатушечного трансформатора стержневого типа число витков на стержне будет (рисунок 5, а):
Толщина первичной обмотки:
где γ1 – толщина изоляционной прокладки между слоями. Изоляционные прокладки следует применять лишь при напряжении между слоями свыше 50 В. Толщина изоляционных прокладок обычно не превышает 0,03 – 0,10 мм; d1н – берется из позиции 5.
Рисунок 5. Формы катушек маломощных двухобмоточных трансформаторов: а – стержневого двухкатушечного; б – стержневого однокатушечного; в – броневого
Число витков вторичной обмотки в одном слое:
Число слоев вторичной обмотки однофазного однокатушечного или трехфазного трансформаторов (рисунок 5, б и в):
Полученное значение m2 также округляется до ближайшего большего числа.
В однофазном двухкатушечном трансформаторе стержневого типа число витков на стержне W2 / 2 (рисунок 5, а):
Толщина вторичной обмотки:
где d2н берется из позиции 5.
Ширина окна сердечника однофазного трансформатора с одной круглой катушкой (рисунок 5, б):
b = ε0 + ε2 + δ1 + δ12 + δ2 + ε3 ,
где
– зазор от стержня до катушки (рисунок 5, б); ε0 = 1,0 – 2,0 – толщина изоляции между катушкой и стержнем, выполняемой обычно из электрокартона; δ12 – толщина изоляции между обмотками, выполняемая обычно в маломощных трансформаторах из электрокартона и лакоткани толщиной 0,10 – 1,0 мм; ε3 – расстояние от катушки до второго стержня, принимаемое обычно в пределах ε3 = 3 – 5 мм; δ1 и δ2 – толщина соответствующих обмоток, мм.
Ширина окна однофазного трансформатора с двумя круглыми катушками, а также трехфазного трансформатора с аналогичными катушками (рисунок 5, а):
b = 2 × (ε0 + ε2 + δ1 + δ12 + δ2) + ε3 .
Ширина окна однофазного трансформатора с одной прямоугольной катушкой (рисунок 5, в):
b = k2 × (ε0 + δ1 + δ12 + δ2) + ε3 ,
где k2 = 1,2 – 1,3 – коэффициент увеличения толщины катушки за счет неплотностей прилегания слоев, в результате чего катушка приобретает овальный вид.
Ширина окна однофазного трансформатора с двумя прямоугольными катушками, а также трехфазного трансформатора с аналогичными катушками:
b = 2 × k2 × (ε0 + δ1 + δ12 + δ2) + ε3.
Формулы и измерение
Формулы для расчета индуктивности катушек довольно сложны и имеет различный вид для различных типов исполнения обмоток:
- линейный проводник;
- одновитковая катушка;
- плоская катушка;
- соленоидальная обмотка;
- тороидальная форма.
Наибольшие сложности возникают при расчетах многовитковых многослойных катушек, то есть тех, которые составляют обмотку трансформаторов.
Формулы для расчета индуктивности трансформатора основаны на расчетах соленоида:
L=µµN2S/l, где
µ0 – магнитная постоянная;
µ – магнитная проницаемость сердечника;
N – количество витков;
S – площадь одного витка;
l – длина обмотки.
Для измерения индуктивности существует несколько методик и приборов, созданных на их основе. В большинстве случаев измерение производится путем вычислений индуктивного сопротивления катушки при подаче образцового напряжения заданной частоты и измеренного значения тока через обмотку.
В специализированных приборах вычисления производятся автоматически, и пользователь только считывает показания шкалы прибора, выраженные в единицах индуктивности – Гн, мГн или мкГн.
Разные виды трансформаторов и их коэффициенты
Хотя конструктивно преобразователи мало чем отличаются друг от друга, назначение их достаточно обширно. Существуют следующие виды трансформаторов, кроме рассмотренных:
- силовой;
- автотрансформатор;
- импульсный;
- сварочный;
- разделительный;
- согласующий;
- пик-трансформатор;
- сдвоенный дроссель;
- трансфлюксор;
- вращающийся;
- воздушный и масляный;
- трехфазный.
Особенностью автотрансформатора является отсутствие гальванической развязки, первичная и вторичная обмотка выполнены одним проводом, причем вторичная является частью первичной. Импульсный масштабирует короткие импульсные сигналы прямоугольной формы. Сварочный работает в режиме короткого замыкания. Разделительные используются там, где нужна особая безопасность по электротехнике: влажные помещения, помещения с большим количеством изделий из металла и подобное. Их k в основном равен 1.
Пик-трансформатор преобразует синусоидальное напряжение в импульсное. Сдвоенный дроссель — это две сдвоенные катушки, но по своим конструктивным особенностям относится к трансформаторам. Трансфлюксор содержит сердечник из магнитопровода, обладающего большой величиной остаточной намагниченности, что позволяет использовать его в качестве памяти. Вращающийся передает сигналы на вращающиеся объекты.
Воздушные и масляные трансформаторы отличаются способом охлаждения. Масляные применяются для масштабирования большой мощности. Трехфазные используются в трехфазной цепи.
Более подробную информацию можно узнать о коэффициенте трансформации трансформатора тока в таблице.
Номинальная вторичная нагрузка, В | 3 | 5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 75 | 100 |
Коэффициент, n | Номинальная предельная кратность | ||||||||||
3000/5 | 37 | 31 | 25 | 20 | 17 | 13 | 11 | 9 | 8 | 6 | 5 |
4000/5 | 38 | 32 | 26 | 22 | 20 | 15 | 13 | 11 | 10 | 8 | 6 |
5000/5 | 38 | 29 | 25 | 22 | 20 | 16 | 14 | 12 | 11 | 10 | 8 |
6000/5 | 39 | 28 | 25 | 22 | 20 | 16 | 15 | 13 | 12 | 10 | 8 |
8000/5 | 38 | 21 | 20 | 19 | 18 | 14 | 14 | 13 | 12 | 11 | 9 |
10000/5 | 37 | 16 | 15 | 15 | 14 | 12 | 12 | 12 | 11 | 10 | 9 |
12000/5 | 39 | 20 | 19 | 18 | 18 | 12 | 15 | 14 | 13 | 12 | 11 |
14000/5 | 38 | 15 | 15 | 14 | 14 | 12 | 13 | 12 | 12 | 11 | 10 |
16000/5 | 36 | 15 | 14 | 13 | 13 | 12 | 10 | 10 | 10 | 9 | 9 |
18000/5 | 41 | 16 | 16 | 15 | 15 | 12 | 14 | 14 | 13 | 12 | 12 |
Почти у всех перечисленных приборов есть сердечник для передачи магнитного потока. Поток появляется благодаря движению электронов в каждом из витков обмотки, и силы токов не должны быть равны нулю. Коэффициент трансформации тока зависит и от вида сердечника:
- стержневой;
- броневой.
Намоточный станок своими руками
Один из возможных вариантов — сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.
Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.
Originally posted 2018-07-04 07:14:26.
Типы магнитопроводов
Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.
По типу используемого металла сердечники разделяют на:
Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.
По типу магнитопровода различают сердечники:
Каждый из перечисленных типов может различаться формой пластин или сегментов:
Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.
Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.
Сборка трансформатора
Качество трансформатора во многом зависит от правильности сборки магнитопровода. При сборке Ш образного броневого сердечника соседние пластины нужно укладывать поочередно в разные стороны. Пакет пластин должен быть уложен максимально плотно. После сборки его нужно обязательно плотно стянуть винтами. Неплотно стянутый трансформатор издает сильный шум во время работы
Особое внимание следует уделить плотному прилеганию Ш образных пластин с пластинами перекрытия. Зазор между ними приведет к тому, что сердечник станет разомкнутым, а отсюда вытекает следующее:
- Повышение тока холостого хода;
- Снижение КПД;
- Повышенное магнитное поле рассеивания.
При сборке разрезного ленточного сердечника нужно обращать внимание на соответствие частей друг другу, поскольку при изготовлении они подгоняются путем шлифовки. Для понижения шума торцы пакетов пластин можно покрыть слоем лака
Читать также: Профи миг 500 настройка
Обратите внимание! Части ленточного магнитопровода требуют аккуратного обращения, поскольку расслоившиеся ленты практически невозможно установить на прежнее место. Пластины разборного сердечника нельзя гнуть и подвергать ударам, поскольку это нарушит структуру металла, и он потеряет свои свойства
В крайнем случае, изогнутые под большим радиусом пластины нужно аккуратно разогнуть руками и при сборке уложить их в середину пакета пластин. При дальнейшей стяжке они выровняются.
Расчет сетевого трансформатора не представляет сложности. Важнее здесь определиться с предъявляемыми к нему требованиями. От правильности поставленной задачи будет зависеть точность дальнейших расчетов. Для силового трансформатора расчет так же удобно выполнить, используя он-лайн калькулятор. По такой же методике рассчитывается повышающий трансформатор.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
Подготовка исходных данных за 6 простых шагов
Шаг №1. Указание формы сердечника и его поперечного сечения
Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.
Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:
- Ширину пластины под катушкой с обмоткой.
- Толщину набранного пакета.
Вставьте эти данные в соответствующие ячейки таблицы.
Шаг №2. Выбор напряжений
Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.
Заполните указанные ячейки.
Шаг №3. Частота сигнала переменного тока
По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.
Их создают из других материалов сердечника и рассчитывают иными способами.
Шаг №4. Коэффициент полезного действия
У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.
Но, вы можете откорректировать его значение вручную.
Шаг №5. Магнитная индуктивность
Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.
По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.
Шаг №6. Плотность тока
Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.
Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.
Выполнение онлайн расчета трансформатора
После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.
Дроссель
Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.
Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:
Также существует еще один особый вид дросселей – это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.
Расчёт параметров прибора
Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.
Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.
Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.
Определение мощности
Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:
P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50
Округление осуществляется в бо́льшую сторону. Результат 50 Вт.
Вычисление сечения сердечника
От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.
S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49
Расчёт количества витков
Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:
n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.
Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.
Токи в обмотках
Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.
В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.
Диаметр провода
Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:
d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.
Для намотки выходной обмотки потребуется провод с диаметром:
d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.
Соленоид
Соленоид отличается от обычной катушки по двум признакам:
- Длина обмотки превышает диаметр в несколько раз;
- Толщина обмотки меньше диаметра катушки также в несколько раз.
Соленоидальный тип катушки
Параметры соленоида можно узнать из такого выражения:
L=µ0N2S/l,
где:
- µ0 – магнитная постоянная;
- N – количество витков;
- S – площадь поперечного сечения обмотки;
- l – длина обмотки.
Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника
Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.
Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам
Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.
Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.
Как пользоваться онлайн калькулятором для расчета трансформатора пошагово Подготовка исходных данных за 6 простых шагов
Выполнение онлайн расчета трансформатора
Как рассчитать силовой трансформатор по формулам за 5 этапов
- Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
Особенности вычисления коэффициента трансформации и токов внутри обмоток
Как вычислить диаметры медного провода для каждой обмотки
Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
Учет свободного места внутри окна магнитопровода
4 практических совета по наладке и сборке трансформатора: личный опыт
Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали. Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения
На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток
Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.
Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.
От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.
Конструкция катушки индуктивности
Вокруг прямолинейного проводника с постоянным током создается круговое магнитное поле. Линии напряженности напоминают спираль. Некто догадался свернуть провод кольцом, чтобы вклад элементарных сегментов сложился в центре. В результате внутри конструкции магнитное поле намного выше, нежели снаружи. Линии визуально наблюдаем на железных опилках. На Ютуб множество роликов, где через индуктивность пропускают ток, демонстрируя упорядоченную ориентацию металлической пыли в момент замыкания контактов. Конструкция способна запасать впрок магнитное поле подобно конденсатору, накапливающему заряд. Катушками называют только индуктивности, содержащие намотку лакированного провода. В микрополосковой технологии напыляемые для запасания магнитного поля элементы логично именовать индуктивностями.
Если в катушке, совсем как в той, что используют швеи, несколько витков провода расположить один за другим бок о бок так, чтобы ось была общей, линии напряженности магнитного поля суммируются. Простейшая индуктивность, способная накапливать энергию магнитного поля. При резком пропадании напряжения образуется явление обратной-ЭДС широко известное технике. Выступает причиной искрения коллекторных двигателей. Используется лакированный (с лаковой изоляцией) медный провод нужного сечения. Количество витков, форма сердечника определяются предварительно расчетами или по имеющемуся образцу.
Бифилярные катушки сегодня широко используются. Что касается обратной ЭДС, служит причиной розжига разрядных ламп (дневного света). Вернемся к конструкции. В первом электромагните проволока оголенная, современные катушки индуктивности наматываются лакированным. Тонкая изоляция при необходимости может быть легко снята (например, токсичной муравьиной кислотой), в исходном состоянии надежно защищает конструкцию против короткого замыкания.
Внутри катушки находится сердечник из ферромагнитного материала. Форма не важна, сечение лучше брать круглым. На высоких частотах магнитный поток (см. Преобразователь напряжения) выходит на поверхность сердечника, смысл применения ферромагнитных сплавов пропадает, иногда используется латунь (даже композитные материалы, диэлектрики). Снижает индуктивность, на высоких частотах запасаемая за период мощность невелика. Трюк проходит. У многих возникает вопрос – зачем нужен сердечник?
Сердечник катушки индуктивности выступает опорой, долговечным каркасом, усиливая магнитное поле. Индукция связана с напряженностью поля через постоянную магнитной проницаемости среды. У ферромагнитных материалов параметр поистине велик. В тысячи раз больше, нежели воздуха, большинства металлов. С ростом частоты необходимость в сердечнике снижается, возникают некоторые негативные эффекты, два из которых особенно важны:
Линии магнитного поля, сформированные опилками
- Переменное магнитное поле наводит вихревые токи, посредством которых функционируют индукционные плитки. Результат представите сами: какой нагрев сердечника вызовет. Сердечники силовых трансформаторов собираются из специальной электротехнической стали с высоким сопротивлением, разбиваются тонкими листами, изолированными взаимно слоем лака. Шихтование позволит сильно снизить влияние вихревых токов.
- Второй эффект называется перемагничиванием. Отнимает энергию поля, вызывает нагрев материала. Явление характерно для ферромагнитных материалов, устраняется использованием латуни.
В микрополосковой технологии предусмотрено исполнение индуктивностей в виде плоских спиралей: проводящий материал через трафарет напыляется на подложку (возможный метод). Напоминает конструкцию Николы Тесла. Номинал катушка индуктивности имеет весьма малый, иного не надо на частотах СВЧ. Расчет ведется по специальным справочникам, хотя пользуются преимущественно инженеры-конструкторы.
Для намотки индуктивности изготавливают специальные приспособления, напоминающие катушку спиннинга. На ось одевается сердечник с ограничителем по бокам, вращая ручку, мастер внимательно считает количество оборотов, отмеряет нужную длину. Медленно, по способу челнока рука двигается влево-вправо, витки ровно ложатся последовательно.
Расчёт параметров изделия
Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.
Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.
Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:
- S- площадь сечения;
- h- высота конструкции;
- D- наружный диаметр;
- d — внутренний диаметр.
Для вычисления площади окна используется формула: Sок=3,14*d2/4.
Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.
Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.
Сварочное устройство
Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:
Теоретическое обоснование
Если в проводящем контуре течёт ток, то ток создаёт магнитное поле .
Будем вести рассмотрение в квазистатическом приближении, подразумевая, что переменные электрические поля достаточно слабы либо меняются достаточно медленно, чтобы можно было пренебречь порождаемыми ими магнитными полями.
Ток считаем одинаковым по всей длине контура (пренебрегая ёмкостью проводника, которая позволяет накапливать заряды в разных его участках, что вызвало бы неодинаковость тока вдоль проводника и заметно усложнило бы картину).
По закону Био — Савара — Лапласа, величина вектора магнитной индукции, создаваемой некоторым элементарным (в смысле геометрической малости участка проводника, рассматриваемого как элементарный источник магнитного поля) током в каждой точке пространства, пропорциональна этому току. Суммируя поля, создаваемые каждым элементарным участком, приходим к тому, что и магнитное поле (вектор магнитной индукции), создаваемое всем проводником, также пропорционально порождающему току.
Рассуждение выше верно для вакуума. В случае присутствия магнитной среды (магнетика) с заметной (или даже большой) магнитной восприимчивостью, вектор магнитной индукции (который и входит в выражение для магнитного потока) будет заметно (или даже во много раз) отличаться от того, каким бы он был в отсутствие магнетика (в вакууме). Мы ограничимся здесь линейным приближением, тогда вектор магнитной индукции, хотя, возможно, возросший (или уменьшившийся) в заметное количество раз по сравнению с отсутствием магнетика при том же контуре с током, тем не менее остаётся пропорциональным порождающему его току.
Тогда магнитный поток, то есть поток поля вектора магнитной индукции:
Φ = ∫ S B ⋅ d S \mathbf \cdot \mathbf >
через любую конкретную фиксированную поверхность S
(в частности и через интересующую нас поверхность, краем которой является наш контур с током) будет пропорционален току, так как пропорционально токуB всюду под интегралом.
Заметим, что поверхность, краем которой является контур, может быть достаточно сложна, если сложен сам контур. Уже для контура в виде просто многовитковой катушки такая поверхность оказывается достаточно сложной. На практике это приводит к использованию некоторых упрощающих представлений, позволяющих легче представить такую поверхность и приближённо рассчитать поток через неё (а также в связи с этим вводятся некоторые дополнительные специальные понятия, подробно описанные в отдельном параграфе ниже). Однако здесь, при чисто теоретическом рассмотрении нет необходимости во введении каких-то дополнительных упрощающих представлений, достаточно просто заметить, что как бы ни был сложен контур, в данном параграфе мы имеем в виду «полный поток» — то есть поток через всю сложную (как бы многолистковую) поверхность, натянутую на все витки катушки (если речь идет о катушке), то есть о том, что называется потокосцеплением. Но поскольку нам здесь не надо конкретно рассчитывать его, а нужно только знать, что он пропорционален току, нам не слишком интересен конкретный вид поверхности, поток через которую нас интересует (ведь свойство пропорциональности току сохраняется для любой
).
Итак, мы обосновали:
этого достаточно, чтобы утверждать, введя обозначение L
для коэффициента пропорциональности, что
В заключение теоретического обоснования покажем, что рассуждение корректно в том смысле, что магнитный поток не зависит от конкретной формы поверхности, натянутой на контур. (Действительно, даже на самый простой контур может быть натянута — в том смысле, что контур должен быть её краем — не единственная поверхность, а разные, например, начав с двух совпадающих поверхностей, затем одну поверхность можно немного прогнуть, и она перестанет совпадать со второй). Поэтому надо показать, что магнитный поток одинаков для любых поверхностей, натянутых на один и тот же контур.
Но это действительно так: возьмём две такие поверхности. Вместе они будут составлять одну замкнутую поверхность. А мы знаем (из закона Гаусса для магнитного поля), что магнитный поток через любую замкнутую поверхность равен нулю. Это (с учетом знаков) означает, что поток через одну поверхность и другую поверхность — равны. Что доказывает корректность определения.
Как измерить диаметр провода.
Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.
Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.
Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.
Пример.
Я намотал 100 витков провода и получил длину набора –39 мм.
39 / 100 = 0,39 мм
По таблице определяю диметр провода по меди – 0,35мм.
Таблица данных обмоточных проводов.
Диаметр без изоляции, мм | Сечение меди, мм² | Сопротив-ление 1м при 20ºС, Ом | Допустимая нагрузка при плотности тока 2А/мм² | Диаметр с изоляцией, мм | Вес 100м с изоляцией, гр |
0,03 | 0,0007 | 24,704 | 0,0014 | 0,045 | 0,8 |
0,04 | 0,0013 | 13,92 | 0,0026 | 0,055 | 1,3 |
0,05 | 0,002 | 9,29 | 0,004 | 0,065 | 1,9 |
0,06 | 0,0028 | 6,44 | 0,0057 | 0,075 | 2,7 |
0,07 | 0,0039 | 4,73 | 0,0077 | 0,085 | 3,6 |
0,08 | 0,005 | 3,63 | 0,0101 | 0,095 | 4,7 |
0,09 | 0,0064 | 2,86 | 0,0127 | 0,105 | 5,9 |
0,1 | 0,0079 | 2,23 | 0,0157 | 0,12 | 7,3 |
0,11 | 0,0095 | 1,85 | 0,019 | 0,13 | 8,8 |
0,12 | 0,0113 | 1,55 | 0,0226 | 0,14 | 10,4 |
0,13 | 0,0133 | 1,32 | 0,0266 | 0,15 | 12,2 |
0,14 | 0,0154 | 1,14 | 0,0308 | 0,16 | 14,1 |
0,15 | 0,0177 | 0,99 | 0,0354 | 0,17 | 16,2 |
0,16 | 0,0201 | 0,873 | 0,0402 | 0,18 | 18,4 |
0,17 | 0,0227 | 0,773 | 0,0454 | 0,19 | 20,8 |
0,18 | 0,0255 | 0,688 | 0,051 | 0,2 | 23,3 |
0,19 | 0,0284 | 0,618 | 0,0568 | 0,21 | 25,9 |
0,2 | 0,0314 | 0,558 | 0,0628 | 0,225 | 28,7 |
0,21 | 0,0346 | 0,507 | 0,0692 | 0,235 | 31,6 |
0,23 | 0,0416 | 0,423 | 0,0832 | 0,255 | 37,8 |
0,25 | 0,0491 | 0,357 | 0,0982 | 0,275 | 44,6 |
0,27 | 0,0573 | 0,306 | 0,115 | 0,31 | 52,2 |
0,29 | 0,0661 | 0,2бб | 0,132 | 0,33 | 60,1 |
0,31 | 0,0755 | 0,233 | 0,151 | 0,35 | 68,9 |
0,33 | 0,0855 | 0,205 | 0,171 | 0,37 | 78 |
0,35 | 0,0962 | 0,182 | 0,192 | 0,39 | 87,6 |
0,38 | 0,1134 | 0,155 | 0,226 | 0,42 | 103 |
0,41 | 0,132 | 0,133 | 0,264 | 0,45 | 120 |
0,44 | 0,1521 | 0,115 | 0,304 | 0,49 | 138 |
0,47 | 0,1735 | 0,101 | 0,346 | 0,52 | 157 |
0,49 | 0,1885 | 0,0931 | 0,378 | 0,54 | 171 |
0,51 | 0,2043 | 0,0859 | 0,408 | 0,56 | 185 |
0,53 | 0,2206 | 0,0795 | 0,441 | 0,58 | 200 |
0,55 | 0,2376 | 0,0737 | 0,476 | 0,6 | 216 |
0,57 | 0,2552 | 0,0687 | 0,51 | 0,62 | 230 |
0,59 | 0,2734 | 0,0641 | 0,547 | 0,64 | 248 |
0,62 | 0,3019 | 0,058 | 0,604 | 0,67 | 273 |
0,64 | 0,3217 | 0,0545 | 0,644 | 0,69 | 291 |
0,67 | 0,3526 | 0,0497 | 0,705 | 0,72 | 319 |
0,69 | 0,3739 | 0,0469 | 0,748 | 0,74 | 338 |
0,72 | 0,4072 | 0,043 | 0,814 | 0,78 | 367 |
0,74 | 0,4301 | 0,0407 | 0,86 | 0,8 | 390 |
0,77 | 0,4657 | 0,0376 | 0,93 | 0,83 | 421 |
0,8 | 0,5027 | 0,0348 | 1,005 | 0,86 | 455 |
0,83 | 0,5411 | 0,0324 | 1,082 | 0,89 | 489 |
0.86 | 0,5809 | 0,0301 | 1,16 | 0,92 | 525 |
0,9 | 0,6362 | 0,0275 | 1,27 | 0,96 | 574 |
0,93 | 0,6793 | 0,0258 | 1,36 | 0,99 | 613 |
0,96 | 0,7238 | 0,0242 | 1,45 | 1,02 | 653 |
1 | 0,7854 | 0,0224 | 1,57 | 1,07 | 710 |
1,04 | 0,8495 | 0,0206 | 1,7 | 1,12 | 764 |
1,08 | 0,9161 | 0,0191 | 1,83 | 1,16 | 827 |
1,12 | 0,9852 | 0,0178 | 1,97 | 1,2 | 886 |
1,16 | 1,057 | 0,0166 | 2,114 | 1,24 | 953 |
1,2 | 1,131 | 0,0155 | 2,26 | 1,28 | 1020 |
1,25 | 1,227 | 0,0143 | 2,45 | 1,33 | 1110 |
1,3 | 1,327 | 0,0132 | 2,654 | 1,38 | 1190 |
1,35 | 1,431 | 0,0123 | 2,86 | 1,43 | 1290 |
1,4 | 1,539 | 0,0113 | 3,078 | 1,48 | 1390 |
1,45 | 1,651 | 0,0106 | 3,3 | 1,53 | 1490 |
1,5 | 1,767 | 0,0098 | 3,534 | 1,58 | 1590 |
1,56 | 1,911 | 0,0092 | 3,822 | 1,64 | 1720 |
1,62 | 2,061 | 0,0085 | 4,122 | 1,71 | 1850 |
1,68 | 2,217 | 0,0079 | 4,433 | 1,77 | 1990 |
1,74 | 2,378 | 0,0074 | 4,756 | 1,83 | 2140 |
1,81 | 2,573 | 0,0068 | 5,146 | 1,9 | 2310 |
1,88 | 2,777 | 0,0063 | 5,555 | 1,97 | 2490 |
1,95 | 2,987 | 0,0059 | 5,98 | 2,04 | 2680 |
2,02 | 3,205 | 0,0055 | 6,409 | 2,12 | 2890 |
2,1 | 3,464 | 0,0051 | 6,92 | 2,2 | 3110 |
2,26 | 4,012 | 0,0044 | 8,023 | 2,36 | 3620 |
2,44 | 4,676 | 0,0037 | 9,352 | 2,54 | 4220 |
Вернуться наверх к меню