Применение конденсаторов
Данная категория элементов очень широко применяется во всех областях электроники и ряде других отраслей промышленности. Среди основных сфер применения стоит обозначить:
- телевизионную и звуковоспроизводящую аппаратуру;
- радиолокационные приборы (здесь конденсаторы помогают генерировать импульсы и увеличивать их мощность);
- телефонные и телеграфные аппараты – в них устройства применяются с целью разделения типов цепей (по частоте, переменности-постоянности) и погашения искр в контактах;
- измерительные электронные приборы;
- лазеры (увеличение мощности импульсов);
- предохранение от перенапряжения в электроэнергетических установках;
- электросварочные работы с применением разряда;
- блокировку генерируемых машинами радиопомех;
- запуск электродвигателей и создание фазового сдвига в добавочной обмотке;
- генераторы, применяемые во время испытаний электротехники для получения импульсов тока и напряжения.
Размеры конденсаторных элементов Конденсаторные элементы используются в очень широком спектре сфер – от печатных плат (миниатюрные smd-компоненты) до мощных двигателей и генераторов импульсов. Для корректного подбора конденсатора нужно уметь расшифровывать маркировку и обозначения на схемах, в частности, ориентироваться в обозначениях емкости устройств.
Типы маркировок
Как работает и как выбрать трансформатор тока
Производители, выпуская конденсаторы, пользуются несколькими типами маркировок, которые располагаются непосредственно на корпусе элемента. Представленные ниже значения сугубо теоретические, в качестве наглядного примера:
- Наиболее простым типом маркировки считается, когда ёмкость сразу указывается на теле конденсатора. То есть не применяются различные шифры и табличные замещения, вся необходимая информация содержится на корпусе. Данный способ был бы актуален для всех устройств, однако, не всегда его получается использовать в силу громоздкости. Для того чтобы предоставить полное обозначение емкости, подходят только довольно большие изделия, в ином случае рассмотреть цифры проблематично даже с применением лупы. На примере разберем запись 100 µF±6% – это ёмкость конденсатора 100 микрофарад, а амортизация 6% от общей емкости. В итоге значение – 94-106 микрофарад. В некоторых ситуациях применяется маркировка следующего вида: 100 µF +8%/-10% – это неравнозначная амортизация, 90-108 микрофарад. Подобная маркировка пленочных конденсаторов хоть и считается наиболее простой и понятной, но применима не во всех случаях из-за своей громоздкости. Как правило, она используется на больших приборах немалых ёмкостей;
- Цифровая маркировка (или с использованием цифр и букв) актуальна, если площадь изделия слишком мала, чтобы на ней разместить подробную запись. Здесь для замены определенных значений применяются обычные цифры и латинские буквы, которые необходимо уметь расшифровывать. Если на поверхности изделия встречаются лишь цифры (как правило, их три), то чтение простое. Первые две цифры – так обозначается емкость. Третья цифра – число нулей, которые следует дописать после первых двух. Для измерения емкости подобных конденсаторов применимы пикофарады. В качестве примера ознакомимся с изделием, на теле которого размещена цифра 104. Оставляем первые цифры, к которым приписываются нули: в нашем случае это 4. В итоге имеем значение в 100000 пикофарад. Чтобы уменьшить число нулей, используется другое значение – микрофарады, которых в нашем случае 100. В некоторых ситуациях величина обозначается буквой. Например, 2n2 – 2.2 нанофарад. Чтобы определить, к какому классу принадлежит изделие, в конце дописывают дополнительную кодовую маркировку конденсатора, к примеру, 100V;
- Маркировка импортных конденсаторов из керамики осуществляется с использованием букв и чисел – это стандарт для данных изделий. Алгоритмы шифрования аналогичны предыдущему методу. Надписи наносит сам производитель;
- Цветовая маркировка конденсаторов тоже встречается, хотя и реже, так как данный способ несколько устарел. Ее применяли в советское время, что позволяло упростить считывание маркировки, даже если изделие было слишком маленьким. Здесь есть единственный недостаток – сразу запомнить обозначения проблематично, поэтому первое время рекомендуется иметь при себе специальную таблицу. Чтение маркировки выглядит так: первые два цвета – емкость в пикофарадах, третий цвет – число дописываемых нулей, четвертый и пятый цвета – номинал напряжения, подаваемого на изделие, и возможный допуск. Так, желтый прибор имеет обозначение цифрой 4, а синий – 6;
- Импортные конденсаторы маркируются так же, а кириллица заменяется латиницей. К примеру, возьмем отечественный вариант с обозначением 5мк1 – 5.1 микрофарад. В случае с импортной кодовой маркировкой выглядеть будет как 5µ.
Для сборки электросхем необходимо уметь читать маркировку
Важно! Если расшифровка непонятна, то следует обратиться к официальному производителю, на сайте которого, как правило, имеется соответствующая таблица. Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные
Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять
Маркировка таких элементов, как конденсаторы, бывает самой разнообразной, и чем меньше элемент, тем компактнее следует размещать на нем данные. Благодаря современному производству, на устройства наносятся даже самые маленькие значения, расшифровывать которые можно, отталкиваясь от вышеописанных способов. Чтобы собранная электрическая цепь работала исправно, необходимо быть внимательным с полученными значениями, которые следует тщательно проверять.
Правила расшифровки маркировки
Сначала разберемся с цифровой маркировкой конденсаторов. Ели устройство имеет маленькие размеры, то для указания емкости используется стандарт EIA. При наличии в коде только двух цифр, после которых следует буква, их значение соответствует номинальной емкости. Третья цифра в коде представляет собой множитель нуля. Если она находится в диапазоне от 0 до 6, то к первым двум цифрам необходимо добавить соответствующее количество нулей. Скажем, обозначение «463» равно 46*103.
Единицы измерения зависят от размеров устройства, и для маленьких это — пикофарады. В остальных случаях принято использовать микрофарады. Когда цифровое обозначение будет расшифровано, необходимо переходить к буквам. Когда они расположены в составе первых двух символов, то используется один из 2 способов:
- Буква «R» заменяет запятую — надпись 3R2 соответствует емкости в 3,2 пикофарады.
- Буква «р» используется в качестве десятичной запятой — р60 соответствует 0,6 пикофарадам. Буквы «n» и «m» выполняют аналогичную задачу, но соответствуют нано- и микрофараде.
Когда может помочь онлайн-калькулятор
Также может использоваться и смешанная маркировка конденсаторов, расшифровка которой проводится похожим образом. Однако первая буква в этом случае указывает на минимальную рабочую температуру элемента. Затем следует номинальная емкость устройства и показатели предельных отклонений. На совсем маленьких устройствах может быть нанесен цветовой код. В такой ситуации вам может помочь расшифровать маркировку конденсаторов калькулятор онлайн. Это позволит сэкономить массу времени.
Другие виды маркировки
Кроме описанных выше способов кодирования информации о конденсаторах, иногда встречаются и другие, если они были выпущены достаточно давно. В подобной ситуации стоит обратиться к соответствующей справочной литературе, чтобы сделать правильный выбор. В большинстве случаев вполне достаточно и рассмотренных выше вариантов. Советские конденсаторы маркируются аналогично импортным, но на них может быть использована кириллица для обозначения емкости.
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
Особенности проектирования печатных плат
Твердотельные танталовые конденсаторы не накладывают каких-либо специфических ограничений на материал печатной платы. Могут быть использованы все общепринятые материалы: FR4, FR5, G10, алюминиевые платы, фторопластовые (PTFE) платы.
Форма и размер контактных площадок, как правило, предоставляются производителями конденсаторов. Чертеж посадочного места сопровождается указанием способа монтажа.
Если требуется использовать форму или размеры площадок отличные от рекомендуемых, следует позаботиться об отладке процесса монтажа. Это может потребовать корректировки температурных режимов пайки.
Основные параметры танталовых конденсаторов
Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:
- Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
- Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
- Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
- Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.
Зачем палладий конденсаторам?
Драгоценные металлы всегда ценились серьезным образом, кроме палладия. Он и раньше стоил копейки, как и пять лет назад. В наше время из-за спекулятивных игр на биржах цена палладия выросла настолько сильно, что этот металл стал стоить в полтора раза дороже золота.
Пару слов о конденсаторах
Эта парадоксальная ситуация продлиться недолго, так считаются эксперты. Ведь и криптовалюты стоили лет десять назад копейки, но в наше время они стоят крайне дорого. Вот и с палладием получилась та же интересная ситуация, что и с криптовалютами – внезапный рост.
Но в советские времена палладий применялся част опри производстве конденсаторов, ведь тогда этот металл стоил крайне недорого. Он имел стоимость примерно такую же, как и медь. Но из-за недостаточно хороших физических свойств палладий не любили применять активно при производстве радиодеталей – не слишком сильно он повышал срок службы радиодеталей.
Не стоит забывать, что драгметаллы в радиодеталях применялись для продления срока службы устройств. Ими покрывали медные контакты, тем самым повышая их срок службы. Не было бы покрытий из драгметаллов, конденсаторы бы служили предельно малый срок.
Пару слов о конденсаторах
Если в старых статьях о конденсаторах и покоящихся в них драгметаллах в первую очередь говорилось о золоте, то сейчас куда важнее наличие палладия. Не во всех конденсаторах палладий присутствовал в больших количествах, но он практически во всех радиодеталях имел место быть.
Например, стоит сказать о таком важном конденсаторе, как К10-28, в котором на тысячу штук имеется 33 грамма палладия по факту. Конденсатор марки К10-43В также очень богат на палладий и из тысячи штук можно получить 68 граммов чистого металла
Но это не рекорд, так как в конденсаторах марки К10-54 имеется 79 граммов палладия на тысячу штук и за этой маркой конденсаторов охотятся многие скупщики радиодеталей. Стоит сказать и то, что радиодетали с драгметаллами использовались повсеместно, только в электронике массового производства драгметаллов имело меньшее количество, чем в аппаратуре специального назначения
Конденсатор марки К10-43В также очень богат на палладий и из тысячи штук можно получить 68 граммов чистого металла. Но это не рекорд, так как в конденсаторах марки К10-54 имеется 79 граммов палладия на тысячу штук и за этой маркой конденсаторов охотятся многие скупщики радиодеталей. Стоит сказать и то, что радиодетали с драгметаллами использовались повсеместно, только в электронике массового производства драгметаллов имело меньшее количество, чем в аппаратуре специального назначения.
Параметры конденсаторов
Эти устройства предназначены для накопления электрического заряда. Емкость измеряется в специальных единицах, именуемых фарадами (Ф, или F). Однако 1 фарад – колоссальная величина, которая не используется в радиотехнике. Для конденсаторов применяется микрофарад (мкФ, µF) – фарад, разделенный на миллион. Единица обозначается как мкФ практически на всех типах конденсаторов. В теоретических расчетах иногда можно увидеть миллифарад (мФ, mF), что равняется фараду, деленному на тысячу. В маленьких конденсаторах применяется нанофарад (нФ, nF) и пикофарад (пФ, pF), что соответственно равняется 10 -9 и 10 -12 фарад
Это обозначение очень важно, так как используется в маркировке либо напрямую, либо с помощью заменяемых значений
Маркировка SMD конденсаторов
SMD конденсаторы ввиду малых размеров маркируются используется символы и цифры. В зависимости от типа конденсатора (танталовых, электролетических, керамических и т.д.) маркировка осуществляется различными способами.
Маркировка керамических SMD конденсаторов
Код таких конденстаторов состоит их 2 или 3-х символов и цифры. Первый символ (при наличии такового) говорит о производителе
(пример K – Kemet), второй это мантиса, а цифра является показателем степени емкости в пикоФарадах.
Пример
S3 это керамический SMD конденсатор с емкростью 4.7×103 пФ
Символ | Мантиса | Символ | Мантиса | Символ | Мантиса | Символ | Мантиса |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B
1.1
K
2.4
T
5.1
b
3.5
C
1.2
L
2.7
U
5.6
d
4.0
D
1.3
M
3.0
V
6.2
e
4.5
E
1.5
N
3.3
W
6.8
f
5.0
F
1.6
P
3.6
X
7.5
m
6.0
G
1.8
Q
3.9
Y
8.2
n
7.0
H
2.0
R
4.3
Z
9.1
t
8.0
коденсаторы могут иметь различные типы диэлектриков:
NP0 или C0G диэлектрик иммеет низкую диэлектрическую проницаемость и хорошую температурную стабильность. Z5U и Y5V дижлектрики обладают высокой диэлектрической проницаемостью с помощью чего достигается большая емкость конденсаторов и больший разброс параметров. X7R и Z5U широко используются в цепях общего назначения.
Диэлектрики обозначаются тремя симоволами, первые два это температурные пределы а третий это изменение емкости в % в данном интревале температур.
Пример
Z5U – точность +22, -56% в диапазоне температур от -55oC до -125oC до
Температурный диапазон | Изменение емкости | ||||
Первый символ | Нижний предел | Второй символ | Верхний предел | Третий символ | Точность |
X | +10oC | 2 | +45oC | A | 1.0% |
Y | -30oC | 4 | +65oC | B | 1.5% |
Z | -55oC | 5 | +85oC | C | 2.2% |
6 | +105oC | D | 3.3% | ||
7 | +125oC | E | 4.7% | ||
8 | +150oC | F | 7.5% | ||
9 | +200oC | P | 10% | ||
R | 15% | ||||
S | 22% | ||||
T | +22%,-33% | ||||
U | +22%,-56% | ||||
V | +22%,-82% |
Маркировка электролитических SMD конденсаторов
Для маркировки таких конденсаторов также используется символьно – цифровая маркировка в которую добавляется рабочее напряжение. Обозгачение состоит из 1-го символа и 3-х цифр. Символ означает рабочее напряжение
Пример
A475 А – это рабочее напряжение, 47-значение , 5-мантиса.
A475 = 47×105 пФ=4,7×106 пФ=4,7мФ 10В.
- e-2.5В;
- G-4В;
- J-6.3В;
- A-10В;
- C-16В;
- D-20В;
- E-25В;
- V-35В;
- H-50В.
Существует также и другая маркировка используемые такими широко известными фирмами как Panasonic, Hitach и другие. Кодировние осуществляется 3-мя основными способами кодирования
Первый способ:
Маркировка осуществлется при помощи 3-х символов, первый это рабочее напряжение, второй это значение емкость третий это множитель. Если указаны только два символа то это означает что не указано рабочее напряжение (3-й символ).
Код | Емкость | Напряжение | Код | Емкость | Напряжение |
A6 | 1.0 | 16/35 | ES6 | 4,7 | 25 |
A7 | 10 | 4 | EW5 | 0,68 | 25 |
AA7 | 10 | 10 | GA7 | 10 | 4 |
AE7 | 15 | 10 | GE7 | 15 | 4 |
AJ6 | 2,2 | 10 | GJ7 | 22 | 4 |
AJ7 | 22 | 10 | GN7 | 33 | 4 |
AN6 | 3,3 | 10 | GS6 | 4,7 | 4 |
AN7 | 33 | 10 | GS7 | 47 | 4 |
AS6 | 4,7 | 10 | GW6 | 6,8 | 4 |
AW6 | 6,8 | 10 | GW7 | 68 | 4 |
CA7 | 10 | 16 | J6 | 2,2 | 6.3/7/20 |
CE7 | 15 | 16 | JE7 | 15 | 6.3/7 |
CJ6 | 4,7 | 10 | GW6 | 6,8 | 4 |
CN6 | 3,3 | 16 | JN6 | 3,3 | 6,3/7 |
CS6 | 4,7 | 16 | JN7 | 33 | 6,3/7 |
CW6 | 6,8 | 16 | JS6 | 4,7 | 6,3/7 |
DA6 | 1,0 | 10 | JS7 | 47 | 6,3/7 |
DA7 | 10 | 20 | JW6 | 6,8 | 6,3/7 |
DE6 | 1,5 | 20 | N5 | 0,33 | 35 |
DJ6 | 2,2 | 20 | N6 | 3,3 | 4/16 |
DN6 | 3,3 | 20 | S5 | 0,47 | 25/35 |
DS6 | 4,7 | 20 | VA6 | 1,0 | 35 |
DW6 | 6,8 | 20 | VE6 | 1,5 | 35 |
E6 | 1,5 | 10/25 | VJ6 | 2,2 | 35 |
EA6 | 1,0 | 25 | VN6 | 3,3 | 35 |
EE6 | 1,5 | 25 | VS5 | 0,47 | 35 |
EJ6 | 2,2 | 25 | VW5 | 0,68 | 35 |
EN6 | 3,3 | 25 | W5 | 0,68 | 20/35 |
Второй способ:
Маркировка четырмя символами (буквами и цифрами), которые обозначают номинальную емкость и рабочее напряжение. Первый символ (буква) означает рабочее напряжение, следующие за ним 2 символа (цифры) означают емкость в пф, а последний символ(цифра) это количество нулей. Такая маркировка конденсаторов имеет 2 варианта:
- две цифры означают номинал в пф, а третья – количество нулей;
- номинал емкости указан в микрофорадах, а знак p выступает в роли десятичной запятой.
Третий способ:
Если размер корпуса большой то маркировка может располагатся в 2 строки, на первой указывается емкость, а на второй рабочее напряжение конденсатора. Если 2 цифры то емкость в микрофарадах если 3 то первые две это емкость в пикофарадах а третья это количество нулей (второй способ). Пример маркировки приведен на рисунке ниже.
Маркировка танталовых smd конденсаторов
Размером A и B
Маркировка рабочего напряжения осуществляется при помощи буквы, которая соответсвует определенному значению напряжения в В.
Символ | G | J | A | C | D | E | V | T |
Напряжение, В | 4 | 6,3 | 10 | 16 | 20 | 25 | 35 | 50 |
Далее за символом (буквой) следует обозначение емкости которое состоит из 3-х цифр, первые 2 это емкость в пикофарадах а третья это количество нулей.
Пример:
маркировка E105 означает 10 00000 пФ и рабочем напряжением 25 В.
Если танталовые конденсаторы размером C,D,E то они маркируются прямой записью.
Пример:
маркировка 46 6V означает 47 мкФ и рабочим напряжением в 6 В.
- < Назад
- Вперёд >
Самостоятельная диагностика конденсатора
Поскольку мы говорим о деталях для работы с постоянным током, не имеет значения, какая применяется технология: электролитическая или полимерная. Проверка полярных конденсаторов выполняется одинаково.
Прежде всего, выполняется внешний осмотр. Электролиты не должны иметь следов вздутия, особенно на торце, где есть насечка в виде креста. При осмотре твердотельных корпусов можно увидеть термические повреждения с нарушением геометрии.
Разумеется, необходимо проверить крепление ножек. Компактная конструкция подразумевает небольшие размеры всех компонентов. Ножки могут банально оторваться еще на стадии сборки.
Танталово-полимерные конденсаторы
Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.
Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.