Что такое частотный преобразователь, основные виды и какой принцип работы

Содержание

Дополнительные функции и параметры

Современный частотный преобразователь для электродвигателя — сложное устройство. Если он выполнен на базе процессора, то функций имеет немало. Даже недорогие модели могут обладать широкой функциональностью. Для оправданного выбора стоит знать, что означает каждый из параметров и для чего нужна та или иная функция.

  • Выходная частота или диапазон ее изменения. Тут все понятно. Этим параметром описываются возможности изменения частоты на выходе.
  • Пределы регулирования напряжения. Вопросов тоже не возникает.
  • Тип преобразования частоты. Может быть векторным и скалярным. Скалярный используется в более простых моделях. Параметры отслеживаются по соотношению напряжения и частоты. Векторный тип преобразования частоты в ЧМ подстраивает работу так, чтобы по отношению к нагрузке, момент вращения был постоянным. Такой способ управления более сложный и надежный, используется в более дорогих моделях.
  • Наличие ПИД-регулятора. Удерживает давление, температуру и скорость в заданных пределах (выставляются при помощи ручки или программируются). Для связи с другими средствами управления должен иметь сигнальные выводы (аналоговые и/или цифровые).
  • Юстировка скорости. Помогает при смене или скачках питания стабилизировать работу двигателя.

    Перечень характеристик преобразователя частоты SV015IG5A-4

  • Вид торможения. Обычно рекомендуют останавливать мотор на свободном выбеге — отключить питание и ждать пока остановится. Может применяться плавное торможение — постепенное снижение напряжения. Механическое торможение — когда скорость вращения вала тормозится за счет силы трения. Быстрее всего останавливается ротор при динамическом торможении. В этом случае на одну из фаз подается постоянное напряжение. Оно взаимодействует с ротором, останавливая его за короткий промежуток времени.
  • Количество выходов с различными частотами. Такой частотный преобразователь для электромотора может обслуживать сразу несколько двигателей с различной (фиксированной) скоростью вращения.

Кроме параметров и дополнительных возможностей, на работу влияет качество сборки. Естественно, лучше брать оборудование известных производителей. Хорошо себя зарекомендовали ABB, Siemens, Mitsubishi, Omron. Но их частотники дешевыми назвать нельзя

Если нужно сэкономить и внешний вид не так важен, обратите внимание на отечественных и белорусских производителей. Внешнее оформление, как водится, желает быть лучше, а характеристики и стабильность работы неплохие

Как подключить частотник к асинхронному двигателю?

Используемый для управления частотой напряжения преобразователь зачастую используется для энергоснабжения трёхфазных двигателей.  С помощью преобразователя частоты также возможно обеспечить присоединение такого устройства к однофазной сети, предотвратив снижение его рабочей мощности. Этим они значимо выигрывают у конденсаторов, которые при подключении не могут сохранить исходный уровень мощности. Подробней про применение частотника для трехфазника- смотрите здесь.

При подключении частотного преобразователя следует предварительно разместить автоматический выключатель, функционирующий от тока сети по значению равного номинальному (или наиболее близкого к таковому) уровню потребления тока в двигателе. Если используется частотник трёхфазного типа, то соответственно следует воспользоваться трёхфазным автоматом с общим рычагом. Такой вариант обеспечивает быстрое обесточивание всех фаз сразу при замыкании на одной из них.

В случае же, если для частотного преобразователя свойственно однофазное питание, то следует применить одинарный автомат, который подходит для работы с утроенным однофазным током.

Однако, при любых обстоятельствах установку частотного преобразователя нельзя осуществлять через включение автомата в месте разрыва нулевых или заземляющих проводов. В таких условиях подразумевается только прямое включение автомата.

Дальнейшую настройку преобразователя частоты осуществляют через соединение с контактами электрического двигателя. Используются при этом фазные провода. Но предварительно производится соединение обмоток электрического двигателя по схеме «звезда» или «треугольник».

Работа по той или иной схеме базируется на том, каков тип преобразователя частоты и характер производимого им напряжения.

По стандарту корпус каждого двигателя имеет отметку с двумя значениями, которым может равняться напряжение. Если частотник продуцирует напряжение соответствующее нижней границы, то соединение осуществляется по типу «треугольник». В остальных случаях для использования принцип «звезды».

Месторасположение управляющего пульта, обязательно прилагающегося при покупке частотного преобразователя, следует подбирать тщательно, чтобы обеспечить наибольшее удобство пользования.

Подключения пульта управления осуществляется по схеме обозначенной в прилагаемой к преобразователю инструкции. После рукоятка фиксируется на нулевом уровне, и автомат включается. В этот момент должно наблюдаться свечение светового индикатора.

Для использования частотного преобразователя, следует надавить кнопку «RUN» (она уже запрограммирована надлежащим образом). Далее делается лёгкий поворот рукоятки, провоцирующий старт постепенного вращения электрического двигателя. Если вращение осуществляется в направлении, противоположном необходимому, то следует нажать реверс. После при помощи рукоятки настраивается требуемая частота вращения устройства. При этом следует учитывать, что на корпусе пульта управления зачастую прописаны не уровни частоты вращения двигателя, выражаемые в оборотах в минуту, а частоты, которую имеет питающее напряжение, выражаемое в герцах.

Чтобы ограничить пусковой ток и снизить пусковой момент в момент пуска асинхронного двигателя с уровнем мощности больше 5000Вт, используется подключение типа «звезда-треугольник». До достижения номинала скорости задействуется схема подключения частотного преобразователя «звезда», а после питание осуществляется по схеме «треугольник». В момент переключения уровень пускового тока уменьшается в три раза относительно прямого пуска. При начале работы по второй схеме до момента разгона двигателей ток возрастёт до уровня прямого пуска. Такой варианты наиболее актуален для, имеющих большую маховую массу, позволяя после разгона сбросить нагрузку.

Логично, что использование такой схемы возможно только с двигателями, рассчитанными на подключения обоих типов.

Проведение работы по схеме «звезда-треугольник» всегда чревато резкими скачками уровня тока в противовес плавному нарастанию в условиях прямого пуска. В момент смены соединения скорость резко снижается и увеличить её можно только увеличив силу тока.

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.

Watch this video on YouTube

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Watch this video on YouTube

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Частотный преобразователь для электродвигателя: назначение и функции

Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.

Некоторые частотные преобразователи управляются микропроцессорами

Частотный инвертор с асинхронным электромотором

Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.

Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.

Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)

С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.

Что дает применение частотного инвертора с синхронным двигателем

Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.

Таблица с несколькими моделями, их параметрами и ценами

Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.

Как выбирать

Для производителей преобразователей частоты и другого электронного оборудования основным инструментом завоевания рынка является цена. С целью её уменьшения они создают приборы с минимальным набором функций. Соответственно, чем универсальнее конкретная модель, тем выше её цена. Для нас это имеет большое значение по той причине, что для эффективной и долгой работы двигателя может потребоваться ПЧ с определенными функциями

Давайте рассмотрим основные критерии, на которые следует обращать внимание

Управление

По способу управления частотные преобразователи делят на векторные и скалярные. Первые на сегодня встречаются гораздо чаще, однако имеют более высокую цену по сравнению со вторыми. Преимущество векторного управления заключается в высокой точности регулировки. Скалярное управление очень просто, оно может лишь удерживать соотношение выходного напряжения и частоты на заданной величине. Такой преобразователь целесообразно ставить на небольшой прибор без высокой нагрузки на двигатель, например, вентилятор.

Мощность

Безусловно, чем это значение выше, тем лучше. К слову, в данном вопросе цифры не столь важны

Обратите большее внимание на фирму-производителя – чем «родственнее» ваше оборудование друг к другу, тем более эффективно оно будет работать. Кроме того, использование нескольких преобразователей от одного бренда поддерживает принцип взаимозаменяемости и простоты обслуживания

Подумайте и наличии в вашем городе соответствующего сервисного центра.

Сетевое напряжение

В данном случае действует тот же принцип, что и в предыдущем разделе – чем шире рабочий диапазон напряжения, тем лучше для нас. Отечественные электросети, к сожалению, слабо знакомы с понятием «стандарт», поэтому лучше максимально обезопасить аппаратуру от вероятных перепадов. Падение напряжения едва ли приведет к серьезным последствиям (преобразователь, скорее всего, просто отключится), а вот большое повышение опасно – оно может привести поломке устройства в результате взрыва электролитических сетевых конденсаторов.

Диапазон частотной регулировки

В данном случае следует опираться исключительно на требования производства и конкретных устройств

Так, например, для такого оборудования, как шлифовальные машины важно значение максимальной частоты (от 1000 Гц). Стандартом нижнего предела считается соотношение 1 к 10 по отношению к верхнему

На практике чаще всего используются преобразователи с диапазоном от 10 до 100 Гц. Заметьте, что широким диапазоном регулировки обладают только модели преобразователей с векторным управлением.

Входы управления

Для передачи команд управления в преобразователях предназначены дискретные входы. С помощью них осуществляется запуск двигателя, остановка, торможение, обратное вращение и т.д. Для сигналов обратной связи, осуществляющих текущий контроль и настройку привода непосредственно во время работы, используются аналоговые входы. А цифровые используются для передачи сигналов с высокой частотой, генерируемых энкодерами (датчиками угла поворота).

Фактически, чем больше вводов, тем лучше, однако большое их количество не только делает сложной настройку прибора, но и повышает его стоимость.

Количество выходных сигналов

Дискретные выходы преобразователя необходимы для вывода сигналов, сообщающих о возникновении проблем, таких как, перегрев устройства, отклонение величины входного напряжения от нормы, авария, ошибка и т.п. Аналоговые выходы необходимы для передачи обратных связей в сложных системах. Принцип выбора тот же: ищите баланс между количеством сигналов и стоимость прибора.

Шина управления

В поиске подходящей шины управления поможет схема подключения преобразователя частоты – количество выходов и входов должно быть, как минимум, равным, но лучше купите шину с небольшим запасом – значительно облегчите себе дальнейшее усовершенствование устройства.

Перегрузочные способности

Нормой считается, если мощность частотного преобразователя выше мощности двигателя на 10-15%. Ток тоже должен быть немного выше номинала двигателя. Однако такой подбор «на глаз» рекомендуется только в случае, когда нет необходимой технической документации на двигатель. При ее наличии – тщательно ознакомьтесь с требованиями и подберите соответствующий преобразователь. Если важны ударные нагрузки, пиковый ток преобразователя должен быть больше указанного значения на 10%.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Схема подключения преобразователя частоты

После переделки вся схема станка, содержащая два привода, имеет вид:

Схема подключения преобразователя частоты

Первым делом скажу, что если делать всё по уму, то надо обеспечить защиту по входу – поставить быстродействующие предохранители или, на худой конец, автоматы с характеристикой “В”. Но что есть, то есть – из защиты только советский 3п С6.

Приводы вытяжки и полировки имеют две общих части – питание и кнопку “Стоп”. Кнопка “Стоп” (SB3) имеет два электрически независимых контакта, которые останавливают оба привода сразу.

Привод вытяжки подключен по классической схеме с самоподхватом, о которой я писал неоднократно. Ссылки – в начале статьи.

Рассмотрим поближе то, что нас интересует – схему подключения ПЧ:

Рабочая схема подключения ПЧ Delta

По силовой части я уже говорил, там всё просто.

По части управления. На схеме обозначены названия клемм, их видно и на фото установки. Чтобы вся схема работала правильно, все эти клеммы нужно правильно запрограммировать, без этого в подключении ПЧ никуда. Поэтому настройка ПЧ и его подключение – два неразрывно связанных понятия.

Далее буду говорить применительно к конкретному ПЧ (инструкция в конце статьи).

Перед настройкой ПЧ желательно вернуть его параметры к заводским настройкам (по умолчанию), особенно, если он где-то уже использовался. Все параметры, которые я менял, сведены в таблицу:

Таблица параметров ПЧ
Номер Название Значение Описание значения
00,03 Отображаемый на дисплее параметр при подаче питания 1 Фактическая выходная частота
01,00 Максимальная выходная частота Fmax 60 Гц Ограничение регулировки сверху
01,01 Частота максимального напряжения 50 Гц Номинальная частота двигателя
01,08 Нижний предел выходной частоты 30 % Ограничение частоты снизу (от Fmax=60Гц это 18Гц)
02,08 Скорость изменения частоты 0,1 Работа кнопок Больше/Меньше
03,04 Коэффициент усиления аналогового выхода 103 % Коррекция показаний вольтметра
03,08 Режим работы встроенного вентилятора 3 При нагреве ПЧ
04,04 Режим управления Пуск/Стоп 2 Трехпроводная схема без фиксации
04,06 Функция входа MI4 11 Уменьшить выходную частоту
04,07 Функция входа MI5 10 Увеличить выходную частоту
06,01 Токоограничение при разгоне 100 % Защита ПЧ
06,02 Токоограничение при работе 90 % Защита ПЧ
06,03 Защита от превышения момента (OL2) 2 Защита ПЧ
06,04 Уровень перегрузки OL2 100 % Защита ПЧ
06,06 Тепловое реле защиты двигателя (OL1) Режим для стандартного двигателя
07,00 Номинальный ток двигателя (1 кВт) 2,2 Для работы теплового реле 06,06

Двигатель в работе на номинальной мощности не используется – ведь полировка это очень нежный процесс. Поэтому нагрева и тем более перегрузки ни у двигателя, ни у частотника не ожидается. Ток двигателя на низких частотах, до 30 Гц – до 1,5 А (падает КПД), на высоких, до 60 Гц – до 1 А.

Скорость меняется кратковременным нажатием на кнопки Больше/Меньше.

Рекомендации по покупке частотных преобразователей

Покупка частотного преобразователя является достаточно ответственным делом, ведь подобные устройства стоят достаточно дорого и на них возлагаются очень серьезные задачи, поэтому некорректность работы оборудования может привести не только к финансовым потерям, но и остановке всего производства или других работ.

Перед тем как покупать преобразователь частот, необходимо:

  • Определиться с параметрами, которые будут соответствовать вашему электродвигателю.
  • Составить рабочую схему, по которой будет осуществляться монтаж и подключение оборудования.
  • Выбрать дополнительные модели, которые будут подключаться к самому преобразователю.
  • Закупить все необходимые кабеля, крепления и каркасы, необходимые для установки.
  • Подготовить рабочую площадку для монтажа. Возможно, нужно будет оборудовать дополнительные источники питания или реорганизовать производственное оборудование для возможности его подключения к преобразователю.

Многие в связи с дороговизной преобразователей частот покупают б/у устройства. Такой подход более рискованный, чем покупка новой продукции, но позволяет сэкономить некоторую сумму денег.  Если вы также решили купить бывший в употреблении преобразователь, то стоит его тщательно проверять не только по внешним признакам, но и в работе. Лучше всего, если продавец не будет демонтировать его со своего объекта и сможет продемонстрировать его работоспособность на практике.

Типы управления частотным преобразователем

Существует два основным метода управления электродвигателями с использованием частотных преобразователей:

  • Скалярный.
  • Векторный.

Асинхронные системы управления на сегодняшний день считаются самыми распространенными. Они используются в приводах вентиляторов, насосов, компрессоров и т.д. Главный принцип, который лежит в основе скалярного управления, состоит в изменении частоты и амплитуды напряжения по закону U/fn = const, где n всегда больше 1. Соответственно, меняя напряжение U, мы изменяем и частоту f в степени n. При этом степенное значение определяется в зависимости от особенностей самого частотного преобразователя и его назначения.

Сама методика скалярного управления достаточно проста с точки зрения ее технической реализации, но при этом имеет два существенных недостатка. Первый заключается в том, что без дополнительного датчика скорости вы не сможете регулировать скорость вала, ведь она напрямую зависит от нагрузки. Данную проблему можно решить простым приобретение датчика.

Но существует еще один недостаток – невозможность регулировки момента. Казалось бы, данная проблема тоже решается покупкой датчика момента. Но он достаточно дорог, да и само управление получится весьма спорным. К тому же, совместно управлять и скоростью и моментом при скалярном типе управления невозможно.

Векторный тип управления подразумевает, что в саму систему закладывается математическая модель работы электродвигателя, что позволяет на программном уровне по входным параметрам рассчитывать и скорость, и момент. При этом обязательно только наличие датчика, который будет снимать показатели тока фаз статора.

Существует два класса векторных систем управления:

  • Без датчиков скорости.
  • С датчиками скорости.

Их использование в тех или иных случаях определяется в зависимости от условий эксплуатации двигателя. Если диапазон изменения скорости вращения вала не превышает 1:100, а требования по точности не более 0,5%, то отлично подойдет система без датчиков.

Если же диапазон изменения скорости составляет 1:1000, а требования по точности установлены на уровне до 0,02%, то лучше использовать системы управления с датчиками.

Стоит отметить, что у векторного управления также есть свои недостатки. Например, для их настройки требуются большие вычислительные мощности и знание рабочих параметров двигателей. Кроме того, векторное управление не может использоваться там, где в преобразователю частот подключено сразу несколько рабочих агрегатов – там целесообразно применять скалярные системы.

Необходимые материалы для самодельного частотника

Изготовить частотник своими руками практически возможно. Для этого нужно определиться с основными деталями, приобрести их, изучить схему сборки. Затем приступить к процессу изготовления.

В начале работы необходимо запастись двумя платами. На одной из плат необходимо установить микроконтроллер и индикатор. На второй — транзисторы, диодный мост, входные клеммы, блок питания и драйвер. Между собой платы необходимо соединять гибким проводом.

Питания будет производиться с помощью импульсного блока.

Для управления маломощным мотором достаточно будет установки токового шунта и подключённого к нему усилителя DA-1. Сечение жил токового шунта составляет полмиллиметра. Для двигателей с более высокой мощностью установки токового шунта недостаточно и поэтому необходимо устанавливать трансформатор.

При мощности двигателей более 0,4 КВт необходима установка термодатчиков.

Микросхема IL300 с линейной развязкой позволяет контролировать параметры электродвигателя.

Оптроны типа ОС2–4 необходимы для дубляжа управляющих кнопок.

Расчёт частотника для электродвигателя

Для того чтобы преобразователь частоты имел возможность работать надёжно и соблюдать заданные значения, необходимо рассчитать его основные параметры:

  • тип исполнения;
  • ток;
  • мощность.

Расчёт тока преобразователя производится по формуле:

где Р – номинальная мощность двигателя, квт;

U – напряжение, В

сosφ – значение коэффициента мощности

Правильный выбор мощности прибора для изменения частоты сказывается на эффективности работы установки. При заниженной мощности частотного преобразователя производительность оборудования будет невысокой. Длительные перегрузки при работе могут привести к поломке преобразователя частоты.

При завышенной мощности частотного преобразователя и скачках напряжения или перегрузке не сработает защита электродвигателя, что приведёт к его повреждению. U

Мощность частотника должна быть больше номинальной мощности соответствующего двигателя на 15%.

Типы сигналов управления

Частотный преобразователь имеет входные и выходные клеммы для подключения датчиков, внешних устройств управления, сигнализации и контроля. Для управления частотно-регулируемым приводом используют следующие сигналы:

  • Цифровые(0-5; 0-10 В). Служат для обмена данными с ПК, а также оборудованием удаленного контроля по протоколам САN, RS232, LАN и так далее.
  • Аналоговые (0-10 В; 0-20 мА). К таким входам подключают датчики, устройства управления с соответствующим уровнем выходного сигнала.
  • Релейные. Предназначены для включения устройств оповещения, сигнальных ламп, звуковой сигнализации, тормозных электромагнитных муфт и т.д.
  • Дискретные (0-10 В; 0-20 мА). Для подключения устройств с 2 положениями.