Для схемы «Симисторный регулятор мощности»
Предлагаемое устройство (рис.1) представляет собой фазовый регулятор мощности, способный работать с нагрузкой от нескольких ватт до единиц киловатт. Эта конструкция представляет собой переработку ранее разработанного устройства . Применение иной элементной базы позволило упростить силовой узел конструкции, повысить надежность и улучшить эксплуатационные характеристики регулятора. Как и в прототипе, в этом регуляторе имеется плавная и ступенчатая регулировка поступающей на нагрузку мощности. Кроме того, в любой момент (не трогая ручки регулятора) устройство можно перевести в режим работы, когда на нагрузку поступает почти 100% мощности. При этом практически отсутствуют радиопомехи. Силовой ключ построен на мощном симисторе VS2. Минимальная мощность подключаемой нагрузки может быть от 3 до 10 Вт. максимальная (1.5 кВт) ограничена типом используемого симистора, условиями его охлаждения и конструкцией помехоподавляющих дросселей. На маломощных транзисторах VT3. регулятор сетевого напряжения на 561ла7 VT4 собран аналог однопереходного транзистора, который армирует короткие импульсы, открывающие маломощный высоковольтный тиристор VS1. Мощность, поступающая на нагрузку, зависит от сопротивления переменного резистора R6. Открывшийся маломощный тиристор, в свою очередь, открывает мощный симистор VS2. Через открывшийся симистор на нагрузку поступает напряжение питания.Чтобы иметь вероятность, например, на пора уменьшить яркость свечения лампы или температуру паяльника. а потом вернуться к прежнему установленному значению, на микросхеме DD1 построен узел ступенчатого менеджмента мощностью. При первом нажатии на кнопку SB1 триггер DD1.2 переключается, на выходе 1 DD1.2 появляется большой логический уровень напряжения («Г), транзистор VT2 открывается и шунтирует цепь ограничения амплитуды сетевого напряжения VD2-HL2. Мощность, подаваемая на нагрузку, ступенчато снижается, зажигается желтый светодиод HL1. Величина, на… Смотреть описание схемы …
Для схемы «Усилитель мощности 200 ВТ на базе TDA 7294»
AUDIO техникаУсилитель мощности 200 ВТ на базе TDA 7294ИМС TDA7294 разработана и изготовляется группой компаний SGS-THOMSON Microelectronics. Это одна из наиболееудачных микросхем УМЗЧ, обладающая не только большой отдаваемой мощностью (100 Вт) и высокой надежностью, но и обеспечивающая наиболее качественное (среди ИМС) звучание. При создании мощных УМЗЧ на биполярных транзисторах (и ИМС) возникает опасность вторичного пробоя, приводящего к выходу их из строя. Существующие системы защиты (SOA) при работе на реактивную нагрузку (реальную АС) теряют свою эффективность.Для обхода этих проблем на выходе TDA7294 применены мощные полевые транзисторы, у которых вторичный пробойотсутствует, а усиление напряжения выполняют как биполярные, так и полевые транзисторы.Совмещенная биполярно-полевая технология с высоковольтными мощными МОП-транзисторами получила фирменноеназвание BCD 100. В типовой схеме включения ИМС развивает 70 Вт синусоидальноймощности на нагрузке 8 6 4 Ом при напряжениях питания соответственно ± 35 31 27 В. Музыкальная мощность (по стандарту МЭК268.3) при этом составляет 100 Вт (при напряжении питание 35 В).В данном усилителе применены две ИМС TDA7294, что позволило развить музыкальную мощность 200 Вт.Технические характеристики:Выходная мощность — 200 Вт ( на 8 ом)Коэфф. нелин. искажений при макс. мощности — -не более 0,1 %Коэфф. нелин. искажений примощности 5 Вт- -не более 0,005 %Диапазон рабочих частот — -10-35000 гцУровень шума при замкнутом входе — — 95 дБСхема усилителя (23 Кб)… Смотреть описание схемы …
С помощью тестера
Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.
Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.
После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.
Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.
Схема регулятора мощности на тиристоре
Сама схема проста до безобразия. Я думаю, что не стоит объяснять принцип её работы:
Детали устройства:
- Диоды; КД 202Р, четыре выпрямительных диода на ток не меньше 5 ампер
- Тиристор; КУ 202Н, или другой с током не меньше 10 ампер
- Транзистор; КТ 117Б
- Резистор переменный; 10 Ком, один
- Резистор подстроечный; 1 Ком, один
- Резисторы постоянные; 39 Ком, мощностью два ватта, два штуки
- Стабилитрон: Д 814Д, один
- Резисторы постоянные; 1,5 Ком, 300 Ом, 100 Ком
- Конденсаторы; 0,047 Мк, 0,47 Мк
- Предохранитель; 10 А, один
Тиристорный регулятор мощности своими руками
Готовое устройство, собранное по этой схеме выглядит вот так:
Так как деталей в схеме используется не очень много, можно применить навесной монтаж. Я же использовал печатный:
Регулятор мощности собранный по этой схеме очень надежен. Сначала этот тиристорный регулятор использовался для вытяжного вентилятора. Эту схему я реализовал около 10 лет назад. Первоначально я не использовал радиаторы охлаждения, так как ток потребления вентилятора очень мал. Затем я стал использовать эту электронную самоделку для пылесоса мощностью 1600 ватт. Без радиаторов силовые детали нагревались значительно, рано или поздно они вышли бы из строя. Но и без радиаторов это устройство проработало целых 10 лет. Пока не пробило тиристор. Первоначально я использовал тиристор марки ТС-10:
Теперь я решил поставить теплоотводы. Не забываем нанести тонкий слой теплопроводящей пасты КПТ-8 на тиристор и 4 диода:
Если у вас не окажется однопереходного транзистора КТ117Б:
то его можно заменить двумя биполярными собранными по схеме:
Сам я такую замену не производил, но должно получиться.
По данной схеме в нагрузку поступает постоянный ток. Это не критично, если нагрузка активная. Например: лампы накаливания, нагревательные тэны, паяльник, пылесос, электродрель и другие устройства, имеющие коллектор и щетки. Если же вы планируете, данный регулятор использовать для реактивной нагрузки, например электродвигателя вентилятора, то нагрузку стоит включить перед диодным мостом, как это показано на схеме:
Резистором R7 регулируют мощность на нагрузке:
а резистором R4 устанавливают границы интервала регулирования:
При таком положении движка резистора на лампочку приходит 80 вольт:
Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.
Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0
Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети
Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0. Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети.
Собранное устройство я поместил в старый ненужный корпус от трансляционного радио. Переменный резистор R7 я установил на штатное место. Осталось поставить на него ручку и проградуировать шкалу напряжения:
Корпус слегка великоват, но зато тиристор и диоды охлаждаются просто великолепно:
С боку устройства я поместил розетку, чтобы можно было подключить вилку от любой нагрузки. Для подключения собранного устройство к электросети я использовал шнур от старого утюга:
Как я говорил ранее, этот тиристорный регулятор мощности очень надёжен. Я им пользуюсь уже не один год. Схема очень проста, её сможет повторить даже начинающий радиолюбитель.
Использование тиристора
Использование такого регулятора напряжения, как тиристор, позволяет сделать плавную регулировку, к примеру, паяльника от половины возможного напряжения до максимального. Если схему усовершенствовать и добавить диодный мост, то можно сделать регулировку от 0 до 100%.
Принцип сборки регулятора на симисторе очень похож на используемый в тиристорном устройстве. Этот метод применим для сборки любого прибора такого типа.
Сборка тиристорного регулятора на печатной плате выглядит следующим образом:
- Сначала необходимо подготовить монтажную схему. Для этого следует наметить на стартовой плате с помощью гвоздя или иголки саму схему. Она должна располагаться удобным образом. Если делать это сложно начинающему мастеру, то можно приобрести плату с готовой схемой.
- Подготовка всех требуемых материалов и инструментов. К ним нужно отнести печатную плату. Её можно сделать самостоятельно или купить. Также следует подготовить нож, кусачки, паяльник, припой, флюс провода и т. п.
- Дальше нужно вмонтировать все детали согласно заранее подготовленной схеме.
- Лишние концы всех деталей необходимо удалить с помощью кусачек.
- После этого идёт этап пропайки. Сперва все детали проделываются флюсом, потом пропаиваются в такой последовательности: конденсаторы с резисторами, транзисторы, тиристоры, диоды, динисторы.
- Следующий этап — подготовка корпуса для сборки.
- Зачистка, запайка контактов.
- Изоляция проводов.
- Проверка перед эксплуатацией.
- Финальная сборка.
В целях управления устройством устанавливается конденсатор с резистором. Он может быть применён к приборам, общая мощность которых не превышает 40 Ватт. Существует возможность регулировки мощности от минимума до максимума.
Простые схемы включения
На рисунке приведены примеры основных схем включения КУ208Г. Они различаются по виду нагрузки и коммутируемым напряжениям. Например, рассматриваемый симистор может использоваться как обычный тиристор, для управления работой приборов от постоянных источников питания (изображение слева). Однако наибольшее распространение получило в сетях 220В.
В данных схемах, для замыкания цепи в нагрузке через КУ208Г, необходимо на короткий промежуток времени подать на затвор отпирающее напряжение (UУ). Это значение, для открытия симистра, зависит от управляющего тока (IУ): при 300 мА (UУ =2.5В); при 160 мА (UУ =5.0 В). Его величина достигается подбором ограничивающего резистора R. При этом следует учитывать, что некоторые экземпляры этого устройства открываются даже при IУ < 50 мА.
Схема регулировки мощности
Зная особенности работы симметричного тиристора его используют не только как силовой ключ, но и в качестве регулятора мощности. Такую схему можно спаять всего из нескольких радиодеталей
Вместе с тем, она требует осторожности и внимательности при сборке, так как с её помощью можно управлять изменением переменного напряжение от 90 до 220 В
В представленной схеме симистор VS1 способен выдерживать мощность около 200 Вт. Для получения больших значений рекомендуется поставить его на радиатор. В качестве индикатора работы конструкции используется слаботочный тиратрон МТХ-90. Конденсатор C1 защищает от помех. С помощью потенциометра R1 регулируется выходная мощность. R2 ограничивает силу тока через ку208г, а резистор R3 на управляющем электроде. В нагрузке можно использовать обычную электрическую лампочку на 220 В. Разбор реализации подобной схемы сотрите в видеоролике.
Самостоятельное изготовление
На сегодня возможно установить простые регуляторы на электрические приборы своими руками, если имеется необходимый инструмент и схемы. Существует несколько возможных вариантов таких схем. К одной из схем можно отнести bt136 600e. Она идеально подходит, например, для регулировки степени нагрева паяльника.
Варианты схем
Паяльник можно оборудовать устройством для регулировки мощности до 90 Вт. Для этого необходимо всего лишь несколько деталей. Именно благодаря такому устройству можно изменять не только степень нагрева жала паяльника, но и уровень свечения настольной лампы, скорость вращения вентилятора для многих других приборов, которые требуют регулировки.
Такой регулятор можно собрать на основе многих симисторов, к примеру, ВТА 16600. Но идеальным вариантом будет использование устройства bt136 600e. Симистор этого типа лучше подходит для регулировки мощности жала паяльника.
С другой стороны, если имеется минимальный опыт работы с микросхемами, то можно вмонтировать такую лампу в схему регулятора мощности на симисторе типа bt136 600e. Главное, правильно выбрать неоновую лампу. От правильного выбора такого устройства будет зависеть качество работы регулятора, его функциональные возможности и многое другое. Она должна иметь минимальные показатели напряжения.
От этого показателя непосредственно зависит плавность регулировки степени нагрева жала паяльника или скорости вентилятора. При монтаже стартера в светильник неоновую лампу можно не применять. Хотя функциональность устройства от этого уменьшается, поскольку показатель напряжения (мощности) прибора при работе не будет виден.
В схемах регулятора для паяльника нет ничего сложного. Для создания диодного моста используются диоды D226. К нему в обязательном порядке следует монтировать тиристор KY202H. Он имеет личную цепь управления. Если диапазон регулировки мощности устройства должен быть довольно большим, то применяются схемы с дополнительной установкой элемента логики — счётчика K561NE8. Регулировать мощность здесь также будет тиристор.
После установки диодного моста, согласно схеме следует обычный параметрический стабилизатор. Он будет включать подачу электричества на микросхему
Также важно правильно подобрать мощность и количество диодов. Они должны соответствовать желаемому диапазону регулировки. Существует и другой вариант схемы для регулировки мощности паяльника
Она очень проста, никаких дорогостоящих и дефицитных деталей в ней нет. Предварительно установив светодиод, можно регулировать включённое/выключенное состояние
Существует и другой вариант схемы для регулировки мощности паяльника. Она очень проста, никаких дорогостоящих и дефицитных деталей в ней нет. Предварительно установив светодиод, можно регулировать включённое/выключенное состояние.
Возможное допустимое напряжение на входе должно равняться от 120 до 210 вольт. Для любых приборов такого типа можно использовать индикатор напряжения. Такое устройство можно найти в старом магнитофоне и использовать его для личных целей. Для усовершенствования прибора можно использовать светодиод или любые другие комплектующие такого типа. Он будет подсвечивать шкалу напряжения устройства, а также включённое или выключенное состояние. Это позволит значительно увеличить его функциональность.
Сборка устройства
При сборке симисторного или тиристорного регулятора мощности своими руками следует позаботиться о качественном корпусе для устройства. Лучшим вариантом будет использование пластика, поскольку его легко согнуть, обрезать, склеить и в целом обрабатывать. Таким образом, нужно из пластика вырезать заготовки, зачистить и обработать края, после чего склеить вместе в форме коробки под устройство. В коробке монтируется сделанный регулятор. После того как прибор собран, его необходимо предварительно проверить на правильность схемы и на работоспособность перед эксплуатацией.
Для того чтобы совершить такую проверку, можно использовать обычный паяльник. В качестве альтернативы применяется мультиметр. Приборы просто нужно подключить к выходу самой регулировочной схемы и вращать ручку регулятора. Если в схеме предусмотрена проверочная лампочка, то при регулировке яркость её свечения должна изменяться.
Datasheet Download — NXP Semiconductors
Номер произв | BT138-600E | ||
Описание | 4Q Triac | ||
Производители | NXP Semiconductors | ||
логотип | |||
1Page
BT138-600E • Direct triggering from low power drivers and logic ICs • High blocking voltage capability • Planar passivated for voltage ruggedness and reliability • Sensitive gate • Triggering in all four quadrants 3. Applications • General purpose motor control • General purpose switching 4. Quick reference data VDRM repetitive peak off- ITSM non-repetitive peak on- full sine wave; Tj(init) = 25 °C; state current tp = 20 ms; Fig. 4; Fig. 5 Tj junction temperature IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1; Fig. 2; Fig. 3 IGT gate trigger current VD = 12 V; IT = 0.1 A; T2+ G+; Tj = 25 °C; Fig. 7 VD = 12 V; IT = 0.1 A; T2+ G-; Tj = 25 °C; Fig. 7 Min Typ Max Unit
NXP Semiconductors VD = 12 V; IT = 0.1 A; T2- G-; Tj = 25 °C; Fig. 7 VD = 12 V; IT = 0.1 A; T2- G+; Tj = 25 °C; Fig. 7 Dynamic characteristics dVD/dt rate of rise of off-state VDM = 402 V; Tj = 125 °C; (VDM = 67% of VDRM); exponential waveform; gate open circuit
NXP Semiconductors VDRM repetitive peak off-state voltage IT(RMS) RMS on-state current full sine wave; Tmb ≤ 99 °C; Fig. 1; Fig. 2; Fig. 3 ITSM non-repetitive peak on-state full sine wave; Tj(init) = 25 °C; current tp = 20 ms; Fig. 4; Fig. 5 full sine wave; Tj(init) = 25 °C; tp = 16.7 ms I2t I2t for fusing tp = 10 ms; sine-wave pulse dIT/dt rate of rise of on-state current IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs; T2+ G+ IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs; T2+ G- IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs; T2- G- IT = 20 A; IG = 0.2 A; dIG/dt = 0.2 A/µs; T2- G+ IGM peak gate current PGM peak gate power PG(AV) average gate power Tstg storage temperature Tj junction temperature BT138-600E — 45 A2s — 50 A/µs |
|||
Всего страниц | 13 Pages | ||
Скачать PDF |
Разновидности тиристоров
Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.
Управление работой тиристоров осуществляется двумя способами:
- подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
- подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.
По принципу работы эти приборы различаются на три вида.
Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.
Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.
Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.
Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.
Зачем нужна проверка
В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.
Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?
Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.
По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».
Настройка регулятора
Проверка регулятора мультиметром
После завершения паяльных работ и всех необходимых подключений можно переходить в проверке самодельного изделия на работоспособность. При обнаружении отклонений от нормальных режимов, заданных описанием схемного решения, потребуется настройка прибора. Она заключается в проверке каждого из элементов по току и напряжению. Для этого удобнее всего запастись специальным прибором – мультметром, а еще лучше – электронным осциллографом.
Перед проведением настройки важно помнить о том, что симистор в этой схеме выполняет функцию фазового регулятора. Его основное назначение – переключение цепи в момент перехода полуволной напряжения нулевой точки с учетом величины эксплуатируемой в данное время нагрузки
В исходном состоянии симистор закрыт, поскольку напряжение на его управляющем электроде не достигло нужной величины. По мере заряда конденсатор через цепочку, открывшуюся за счет поступления полуволны напряжения, потенциал на нем и на подключенном параллельно динисторе постепенно возрастает.
Указанные процессы хорошо видны на экране осциллографа, при наличии которого настройка прибора заметно упростится.
По достижении напряжением в этой точке величины примерно 30 Вольт, динистор и симистор одновременно открываются на время равное полупериоду волны. За счет периодически повторяющейся с частотой 50 Герц коммутации управляющей цепочки удается изменять величину мощности в нагрузке в заданных пределах.
Ценовые категории
Сегодня на рынке имеется множество современных производителей, которые предлагают разные по качеству и цене товары. Нужно тщательно выбирать приспособление в зависимости от того, какой результат нужно получить.
Среди множества предложений обращать внимание необходимо на такие характеристики:
- Мощность приспособления. Чем она будет выше, тем и стоимость прибора будет больше.
- Сложность самой схемы. В самых простых схемах цена устройства будет зависеть от самих симисторов и ограничиваться их стоимостью. В более сложных схемах с микроконтроллером стоимость в несколько раз увеличивается. Хотя они и дают более высокие возможности, но и цена соответственно возрастает.
- Марка производителя. От этого параметра цена в некоторых случаях может возрастать в два раза. Но можно найти менее раскрученный бренд намного дешевле, а по своим показателям устройство будет ничем не хуже.
Таким образом, собрать тиристорный или симисторный регулятор мощности не составит особого труда даже для начинающих мастеров. Более сложной задачей будет усвоение правил его эксплуатации. Очень важным остаётся то, чтобы все вышеуказанные правила и инструкции по сборке учитывались. Это позволит сделать более качественное приспособление, которое будет бесперебойно и эффективно работать, а также приносить пользу своему владельцу.