Bldc двигатель в стиральной машине что это

Ротор коллекторного двигателя

Ротор коллекторного двигателя состоит из вала, на который насаживается сборный магнитопровод. С одной стороны, на вал крепится коллекторный узел, с другой, лопасти вентилятора. Для обеспечения лёгкого вращения и для фиксации в корпусе на вал с двух сторон надеваются подшипники. Для нормальной работы электродвигателя, необходимо чтобы ротор был отлично сбалансирован. Потому к изготовлению этой части подходят особенно скрупулёзно.

Подвижная (вращающаяся) часть

Роторная обмотка

Сердечник ротора собирается из металлических пластин, отштампованных из магнитного металла. Толщина пластин 0,35-0,5 мм, каждая из них залита слоем диэлектрического лака, для избавления от паразитных токов. Пластины по внешнему краю имеют пазы, в которые затем укладываются витки медной проволоки. Эти пластины насаживаются на вал и закрепляются на нём, собирается пакет требуемого размера. Эта система является магнитопроводом.

Так выглядит ротор коллекторного двигателя

В пазы магнитопровода укладывается витки медного обмоточного провода. Выходы обмоток выводятся на коллекторный узел, где и происходит их переключение.

Как устроен коллекторный узел и как он работает

Коллекторный узел стоит рассмотреть подробнее. Иначе понять, как вращается ротор, сложно. Коллектор имеет цилиндрическую форму и набран из медных пластин (иногда называют ламелями), которые изолированы друг от друга слюдяными или текстолитовыми прокладками. Нет электрического контакта и с осью вала, к которому он крепится.

Коллектор имеет вид цилиндра, который набран из медных пластин. Пластины сделаны в виде секторов, разделены диэлектрическими прокладками

Получается, коллектор собран из медных секторов и без обмотки электрически друг с другом не связанных. К каждой пластине коллектора крепится вывод одной рамки обмотки ротора. К плоскости двух противоположных рамок коллектора прижимается две щетки. Они плотно прилегают к поверхности медной пластины коллектора, что даёт хороший контакт. На эти щётки подаётся потенциал, который и передаётся в тот виток обмотки ротора, который подключён к этим пластинам.

К парным пластинам коллектора прижимаются графитовые щетки

Так как ротор с некоторой скоростью вращается, одна пара пластин сменяется другой. Таким образом, напряжение передаётся на все обмотки ротора. При этом возникающие друг за другом поля поддерживают вращение ротора, «проталкивая» его в нужном направлении.

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы. Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.

Среди недостатков можно выделить очень высокую стоимость, если учитывать еще и цену контроллера. Даже кратковременно включить для проверки работоспособности такой электродвигатель не получится. Кроме того, ремонтировать такие моторы намного сложнее из-за их особенностей конструкции.

Плюсы и минусы бесщеточного двигателя

Если с устройством бесщеточного двигателя мы разобрались, то теперь давайте рассмотрим положительные и отрицательные стороны инструментов с бесщеточными моторами.

Минусы:

Но не бывает все настолько радужно. Даже у инструментов с бесщеточными двигателями есть и свои недостатки. Так сказать, ложка дегтя в бочке меда.

  1. К минусам, в первую очередь стоит отнести стоимость инструментов. Техника с бесщеточным мотором в цене дороже, чем упрощенные модели со щеточным двигателем.
  2. Вторым недостатком бесколлекторных инструментов может быть сложное и дорогое техническое обслуживание. Бесщеточный двигатель — технологичное устройство, для работы с которым нужны знания в микроэлектронике. К счастью, в сотрудники наших сервисных центров знают и умеют обслуживать бесколлекторные двигатели.

Управление бесколлекторным двигателем постоянного тока

На каждой ступени коммутации, обмотка одной фазы подключается к положительному напряжению питания, другая — к отрицательному, а третья — остается неподключенной. Обратная ЭДС неподключенной фазы в результате пересекает ноль при пересечении среднего значения положительного и отрицательного напряжений. Пересечение ноля возникает всегда в центре между двумя коммутациями. На постоянной скорости или медленно изменяющейся скорости период времени от одной коммутации до пересечения нуля и время от пересечения нуля до следующей коммутации равны. Это используется в качестве основы в данной реализации устройства управления без использования датчиков.

Для определения сигналов обратной ЭДС будем использовать метод виртуальной средней точки, для этого меряем напряжение на свободной фазе и сравниваем его со средней точкой. При использовании АЦП требуется некоторое время для преобразования, что снижает производительность, поэтому логичнее использовать аналоговые компараторы, нам ведь не нужно знать точное значение АЦП этого сигнала. Компаратор может генерировать прерывание в момент перехода напряжения через среднюю точку, а также выдавать логический сигнал своего состояния, что нам и будет нужно.

Три ШИМ-канала, OC1A, OC2 и OC1B, управляют верхними ключами(P-канальные MOSFET) мостовой схемы. Это дает возможность управления электрическим током с помощью аппаратных возможностей генерации ШИМ-сигналов при минимальном использовании программных ресурсов

В этом случае управление скоростью выполняется за счет изменения скважности ШИМ-сигнала

Нижние ключи управляются логическими сигналами, и в нужный момент N-канальные MOSFET подключают обмотку к минусу питания или к линии обратной ЭДС. Ниже представлены таблицы состояний сигналов подаваемых на верхние и нижние ключи, с направлением вращения по часовой и против часовой стрелки.

Биты конфигурации микроконтроллера

Код программы с подробными комментариями:

Источник

Генераторы с компаундным возбуждением и компенсирующей ёмкостью

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Принцип работы БДКП

В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Двигатель PowerState

PowerState – это бесщеточный двигатель, разработанный Milwaukee и выпущенный в начале 2012 года. По заявлениям компании это самый производительный и надежный бесщеточный мотор среди представленных на инструментальном рынке.

Двигатели PowerState для различного инструмента.

Внешне мотор как мотор. Для сравнения на фото внешний вид двигателей 18-вольтовых импульсных шуруповертов. К слову, в самом тесте победил Milwaukee, как и во многих других тестах, так что, возможно, это не пустые обещания производителя.

Слева-направо: Hilti SID 18A, Makita LXDT06, Milwaukee 2653-22.

Согласно тестированию в лабораториях Milwaukee, новый мотор обладает ресурсом, в 10 раз превышающим ресурс мотора, применяемого на моделях предыдущей версии M18 (500 часов у M18 Fuel и 50 часов у M18). Тут, правда, вкрался маркетинг, «50 часов» – до первой замены щеток, а не до полного выхода из строя. У двигателей M12 Fuel заявленный ресурс так же 500 часов. На счет ресурса простых M12 ничего не могу сказать, там даже мотор со встроенными несменными щетками.

Щетки на 4-полюсном коллекторном двигателе предыдущего поколения M18.

За счет использованных технологий, по сравнению с предыдущей линейкой M18, мощность у M18 Fuel выросла на 25% при том, что мотор стал более компактным и менее прожорливым (за счет повышения КПД).

Внешний вид и устройство двигателя инструмента Milwaukee M18 предыдущего поколения.

Двигатель PowerState в инструменте Milwaukee M18 Fuel (шуруповерт 2603 или 2604).

На практике, производитель обещает нам в 2 раза больше мощности и в 4 раза дольше время работы. Заявлено это для M18 Fuel () относительно бесщеточной Makita LXPH05. Для нашего рынка это Makita DHP459 (на унылом официальном российском сайте ее попросту нет, поэтому без ссылки). Насчет мощности близко к правде (крутящий момент макиты – 45 Нм, а милки — 82 Нм). Насчет времени работы, кто его знает… У обоих производителей есть аккумуляторы 18В емкостью от 1.5 Ач до 5 Ач. Ну, вы поняли…

Контроллеры бесколлекторных моторов (ESC регуляторы)

Рис. 3. ESC регуляторы

Задача контроллера состоит в том, что бы передать энергию постоянного тока от аккумулятора к трехфазному бесколлекторному мотору. Для передачи энергии контроллер использует MOSFETы — силовые ключи, которые могут открываться и закрываться за долю секунды. Если мощности одного ключа недостаточно, используется несколько ключей, включенных параллельно. Попеременное включение/выключение фаз поддерживает вращение мотора. За переключением фаз следит микроконтроллер регулятора. Функциональная схема ESC регулятора показана на рис. 4

Рис. 4. Функциональная схема ESC регулятора

Как устроен бесщеточный двигатель

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.

В настоящее время существует несколько типов устройств, имеющих различные характеристики.

С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.

Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Пример использования

В качестве примера настроим автоматическую калибровку ESC-регулятора при запуске скетча Arduino. Нам потребуются следующие компоненты:

Плата Arduino Uno – 1;

Плата прототипирования – 1;

Мотор бесколлекторный – 1;

Потенциометр 10 кОм – 1;

Блок питания 12 В – 1;

Для калибровки в процедуре setup() производим эмуляцию перевода потенциометра м максимальное и минимальное положение. Содержимое скетча показано в листинге 2.

После запуска Arduino в процедуре setup() происходит калибровка регулятора, и в процедуре loop() мотор крутится со скоростью, соответствующей положению потенциометра.

Часто задаваемые вопросы

1. Не запускаются моторы

Проверьте подключение моторов к ESC-регулятору, ESC-регулятора к блоку питания и Arduino.

Источник

Какую стиральную машину выбрать

Наступил момент покупки. Вот теперь отрывайтесь на полную, ведь после определения «мотора мечты» открывается весь горизонт критериев. Каждая модель имеет так называемый паспорт технических характеристик (наклейка на корпусе и инструкция). Там указана основная информация. В статье Стиральные машины: расшифровка функций и программ мы как раз рассказываем подробнее об интересностях стиральных режимов. Рекомендуем почитать.

Знаете, автоматическая стиралка – это упрощение домашних забот, независимо от того, какой мотор заставляет ее «плясать». Однако здорово, что теперь Вы выбираете себе помощницу с пониманием ее внутреннего мира и знанием, чего ожидать в период эксплуатации. Желаем Вам только правильных покупок и взвешенных решений!

Самсунг, 10 лет безупречной работы как один день, щеточный двигатель, семья большая, стирка 3-4 раза в неделю, износились щетки, посмотрел нутро, пришел к выводу что это начало высасывания денег на ремонт, и. поменял на новую стир. машину самсунг, с таким же щеточным двигателем. P/S никакого щеточного шума нет! самое главное простая схема управления щеточным двигателем, отсюда супер надежность! и расположение платы в сухом месте.

Вывод из статьи асинхронный — дёшево и сердито.

Асинхронный двигатель

Существуют двух- и трехфазные асинхронные двигатели для стиральных машин. Начиная с 2000-х годов, устройства с двухфазными двигателями практически не выпускают: их заменили более развитыми и компактными технологиями, к которым относятся и трехфазные с частотным регулированием скорости.

В устройстве таких моторов две основные части – неподвижный статор и вызывающий вращение барабана ротор. Скорость вращения может достигать 2800 оборотов в минуту. Самая частая неисправность – ослабление вращающего момента, из-за чего барабан начинает покачиваться по сторонам и не выполняет полных оборотов.

Асинхронный двигатель обладает следующими преимуществами:

  • простота конструкции;
  • легкость обслуживания (чаще всего необходимо лишь смазывать мотор или менять подшипники);
  • низкий уровень шума;
  • относительно низкая стоимость.

Недостатками же является большой размер мотора, низкий КПД, сложность при управлении электросхемами. В современных мощных стиральных машинах такие двигатели не используют, встретить их можно в простеньких и недорогих моделях.

Двигатели с регуляторами АВР5

Бесколлекторный двигатель с регулятором данной серии часто применяется в промышленной сфере для управления различными электроприборами. В бытовых устройствах он устанавливается довольно редко. Особенностью таких бесколлекторных модификаций можно назвать повышенную частотность. При этом параметр мощности у них менять просто. Катушки в данных модификациях встречаются самые разнообразные. Также следует отметить, что магниты чаще всего устанавливаются на внешней стороне роторной коробки.

Затворы в основном используются изолированного типа. Монтироваться они могут как у статорной коробки, так и сердечника. В целом регулировка устройства происходит довольно быстро. Однако следует учитывать также и недостатки таких систем. В первую очередь они связаны с перебоями питания при низких частотах

Также важно упомянуть, что у моделей данного типа потребление электроэнергии довольно большое. При этом для управления интегральными электроприводами устройства не подходят

Применение

Области применения БДТП следующие:

  • создание моделей;
  • медицина;
  • автомобилестроение;
  • нефтегазовая промышленность;
  • бытовые приборы;
  • военная техника.

Использование БД для авиамоделей дает значительное преимущество по мощности и габаритам. Сравнение обычного коллекторного двигателя типа Speed-400 и БДТП того же класса Astro Flight 020 показывает, что двигатель первого типа имеет кпд 40-60%. Кпд второго двигателя в тех же условиях может достигать 95%. Таким образом, использование БД позволяет увеличить почти в 2 раза мощность силовой части модели или время ее полета.

Благодаря малому шуму и отсутствию нагревания при работе БДПТ широко используются в медицине, особенно в стоматологии.

В автомобилях такие двигатели используются в подъемниках стекол, электростеклоочистителях, омывателях фар и электрорегуляторах подъема кресел.

Отсутствие коллектора и искрения щеток позволяет использовать БД в качестве элементов запорных устройств в нефтегазовой промышленности.

В качестве примера использования БД в бытовой технике можно отметить стиральную машину с прямым приводом барабана компании LG. Эта компания использует БДТП типа Outrunner. На роторе двигателя имеется 12 магнитов, а на статоре – 36 катушек индуктивности, которые намотаны проводом диаметром в 1 мм на сердечники из магнитопроводящей стали. Катушки соединены последовательно по 12 штук в фазе. Сопротивление каждой фазы равно 12 Ом. В качестве датчика положения ротора используется датчик Холла. Ротор двигателя крепится к баку стиральной машины.

Повсеместно данный двигатель используется в жестких дисках для компьютеров, что делает их компактными, в CD и DVD приводах и системах охлаждения для микро-электронотехнических устройств и не только.

Наряду с БД малой и средней мощности в промышленности с тяжелыми условиями работы, судовой и военной промышленностях все больше используются большие БДПТ.

БД большой мощности разработаны для американских ВМС. Например, компания Powertec разработала БДТП мощностью 220 кВт со скоростью в 2000 об/мин. Момент двигателя достигает 1080 Нм.

Кроме указанных областей, БД применяются в проектах станков, прессов, линий для обработки пластмасс, а также в ветроэнергетике и использовании энергии приливных волн.

Некоторые термины, используемые в тематике BLDC и ESC

При изучении принципов работы BLDC двигателей и контроллеров ESC вы можете столкнуться с некоторыми терминами, используемыми в данной тематике. Кратко рассмотрим основные из этих терминов.

Braking (торможение) – определяет насколько быстро BLDC двигатель может остановить свое вращение. Это особенно актуально для летающих средств (дронов, геликоптеров и т.д.) поскольку они вынуждены часто изменять количество оборотов двигателя в минуту чтобы маневрировать в воздухе.

Soft Start (плавный пуск, старт) – эта способность особенно важна для BLDC двигателей когда вращающий момент от него на исполнительный механизм (колесо, винт и т.д.) передается через механизм передач, обычно состоящий из шестерен. Плавный пуск означает, что двигатель не начнет сразу вращаться с максимальной скоростью, а будет увеличивать свою скорость вращения постепенно независимо от того, с какой скоростью нарастает управляющее воздействие. Плавный пуск значительно снижает износ шестерен, входящих в передаточный механизм.

Motor Direction (направление вращения двигателя) – обычно направление вращения BLDC двигателей не изменяется в процессе эксплуатации, однако во время сборки и тестирования работы изделия может потребоваться изменение направления вращения двигателя, обычно это можно сделать просто поменяв местами любые два провода двигателя.

Low Voltage Stop (остановка при низком напряжении питания) . Обычно BLDC двигатели калибруют так, чтобы при одинаковом уровне управляющего воздействия скорость его вращения была постоянной. Однако этого трудно достигнуть потому что со временем напряжение питающей батареи уменьшается. Чтобы предотвратить это обычно контроллеры ESC программируют таким образом чтобы они останавливали работу BLDC двигателя когда напряжение питающей батареи опускается ниже определенной границы. Особенно эта функция полезна при использовании BLDC двигателей в дронах.

Response time (время отклика, время реакции, время ответа) . Означает способность двигателя быстро изменять скорость вращения при изменении управляющего воздействия. Чем меньше время реакции, тем лучше контроль над двигателем.

Advance (движение вперед) . Эта проблема является своеобразной «ахиллесовой пятой» для BLDC двигателей. Все BLDC двигатели имеют хотя бы небольшой подобный баг. Эта проблема вызвана тем, что когда катушка статора запитана ротор движется вперед поскольку на нем есть постоянный магнит. И когда управляющее напряжение с этой катушки снимают (чтобы подать его на следующую катушку) ротор продвигается вперед немного дальше чем предусмотрено логикой функционирования двигателя. Это нежелательное продвижение двигателя вперед в англоязычной литературе называют “Advance” и оно может приводить к нежелательным вибрациям, нагреву и шуму при работе двигателя. Поэтому хорошие контроллеры ESC стараются по возможности устранить этот эффект в работе BLDC двигателей.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться.

В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.

На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Как работает бесколлекторный двигатель постоянного тока

Узнайте обо всех достоинствах бесколлекторных двигателей, а также о преимуществах и недостатках выбора этого типа двигателей для вашего проекта.

Если вы работаете над проектом, в котором есть движущаяся часть, вы, вероятно, будете искать двигатель, чтобы сделать это движение возможным. В этой серии статей мы рассмотрим наиболее популярные типы двигателей, которые используют разработчики. Сначала мы рассмотрели коллекторные двигатели постоянного тока. Теперь давайте посмотрим на их ближайший аналог: бесколлекторный двигатель постоянного тока.

Чтобы узнать, для каких проектов лучше всего подходят бесколлекторные двигатели постоянного тока, ознакомьтесь с обзором:

Обзор бесколлекторных двигателей постоянного тока

Бесколлекторные двигатели – это новая технология двигателей, быстро внедряемая в высокотехнологичных приборах и электромобилях (например, Tesla Model S) в качестве замены коллекторных двигателей постоянного тока. Они также чрезвычайно распространены в любительских летательных аппаратах, включая многомоторные. Поскольку бесколлекторные двигатели постоянного тока не имеют коллектора и щеток (что очевидно), они работают без многих ограничений коллекторных двигателей постоянного тока.

Как они работают?

Бесколлекторные двигатели постоянного тока обычно используются в многомоторных летательных аппаратах из-за их высокой скорости и эффективности.

Как и коллекторные двигатели постоянного тока, бесколлекторные двигатели работают путем изменения полярности обмоток внутри двигателя. Магнитные поля, создаваемые при возбуждении обмоток, оказывают толкающее воздействие на постоянные магниты, расположенные вокруг внешнего корпуса.

На бесколлекторном двигателе постоянного тока вращается не вал двигателя, а внешний корпус. Поскольку центральный вал, к которому прикреплены обмотки, является неподвижным, питание может подаваться непосредственно на обмотки, что устраняет необходимость в щетках и коллекторе.

Без щеток бесколлекторные двигатели изнашиваются намного менее быстро, чем коллекторные двигатели постоянного тока. Они работают с гораздо меньшим звуковым и электрическим шумом и способны работать на гораздо более высоких скоростях.

Бесколлекторные двигатели постоянного тока только недавно начали использоваться в потребительских товарах и любительских проектах, потому что их сложно контролировать.

В то время как коллекторные двигатели постоянного тока для изменения полярности обмоток используют просто вращение самого двигателя, бесколлекторные двигатели постоянного тока управляются активно и требуют сложной схемы управления обмоткой, которая также должна масштабироваться при увеличении скорости.

Только благодаря тому, что микроконтроллеры стали дешевле и доступнее, стало возможным, чтобы недорогие системы могли удерживать правильную частоту вращения, необходимую для работы двигателя.

Достоинства бесколлекторных двигателей постоянного тока

Низкий износ

Единственным физическим интерфейсом между вращающейся внешней стороной корпуса двигателя и стационарными обмотками внутри являются шарикоподшипники, что означает, что бесколлекторные двигатели постоянного тока изнашиваются очень медленно.

Высокая скорость

Бесколлекторные двигатели имеют намного меньшее трение, чем коллекторные двигатели постоянного тока, поэтому они могут работать на более высоких скоростях.

Высокая эффективность

По сравнению с другими типами двигателей бесколлекторные двигатели обладают очень высокой эффективностью работы, что означает более низкое энергопотребление при той же выходной мощности по сравнению с коллекторными двигателями постоянного тока.

Недостатки бесколлекторных двигателей постоянного тока

Очень высокая сложность управления

Бесколлекторные двигатели постоянного тока для правильной работы требуют специализированных контроллеров и сложных алгоритмов управления.

Высокая цена

Стоимость самих двигателей не слишком высока, но когда добавляется стоимость контроллера, общая стоимость использования бесколлекторного двигателя постоянного тока в проекте становится относительно высокой.

Необходимость специализированных передач

В таких приложениях, как вакуумные пылесосы Dyson, бесколлекторные двигатели постоянного тока должны быть снабжены передачей для преобразования высоких скоростей до нужной скорости.

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.