? ввод текста энкодером на ардуино

Содержание

Символ окончания строки

Обычно строки оканчиваются нулевым символом (код 0 в ASCII). Это позволяет функциям (таким как Serial.print()) выявлять окончание строки. В противном случае могут считаться байты памяти, не принадлежащие переменной.

Массивы символов, выделяемый под строку, должны иметь один дополнительный элемент для символа конца строки. Именно поэтому Str2 и Str5 должны иметь 8 символом, хотя «arduino» 7 символов — последнему элементу автоматически присваивается символ окончания строки.

Технически возможно объявить строку без символа окончания строки, например, объявить длину массива равной 7 для Str2. Это приведет к некорректной работе функций, оперирующих строками.

Когда использовать строковый объект или массив строковых символов

Объект String намного проще в использовании, чем массив строковых символов. Объект имеет встроенные функции, которые могут выполнять ряд операций со строками, которые полностью задокументированы в справочном разделе на веб-сайте Arduino.

Основным недостатком использования объекта String является то, что он использует много памяти и может быстро использовать оперативную память Arduino, что может привести к зависанию, сбою или неожиданному поведению Arduino. Это особенно верно для небольших плат, таких как Arduino Uno.

Если скетч на Arduino небольшой и ограничивает использование объектов, то проблем возникнуть не должно.

Строки символьных массивов сложнее использовать, и вам может потребоваться написать свои собственные функции для работы с этими типами строк. Преимущество состоит в том, что у вас есть контроль над размером создаваемых массивов строк, поэтому вы можете сохранять массивы небольшими для экономии памяти.

Вам нужно убедиться, что вы не пишете через конец границ массива строковыми массивами. У объекта String нет этой проблемы, и он позаботится о границах строки за вас при условии, что у него достаточно памяти. Объект String может попытаться выполнить запись в несуществующую память, когда ему не хватает памяти, но никогда не будет записывать поверх конца строки, с которой он работает.

Преобразование String в массив char

Тип данных Char позволяет объявлять текстовые строки несколькими способами:

  • char myStr1; – в данном случае объявлен массив определенного размера.
  • char myStr2 = <‘a’, b, ‘c’, ‘d’, ‘e’>; – объявлен сам массив. Конечный символ не записанявно, его прибавит сам компилятор.
  • char myStr3 = <‘a’, b, ‘c’, ‘d’, ‘e’’/0’>; – объявлен массив, при этом в конце прописан признак окончания строки.
  • char myStr4 = “abcde”; – инициализация массива строковой постоянной. Размер и завершающий символ добавляются автоматически компилятором.
  • char myStr5 = “abcde”; – инициализация массива с точным указанием его размера.
  • char myStr 6 = “abcde”; – аналогично, но размер указан больше для возможности использования строк большей длины.

Еще раз напомним, что в типе данных char строковые константы нужно записывать в двойные кавычки «Abcde», а одиночные символы – в одинарные ‘a’.

Конвертировать строку в массив сhar array можно при помощи следующего кода:

String stringVar = “111”;

Можно сделать обратное преобразование – char to string.

char[] chArray = “start”;

Пример преобразования String to const char*. Указание звездочкой char*означает, что это массив указателей.

String stringVar=string (`start);

Char charVar;

Создание строк в ардуино с помощью String

В ардуино у нас есть несколько способов создать строку, приведем основные:

  • char myCharStr = “Start”;  – массив типа char с завершающим пустым символом;
  • String myStr = “Start”; – объявляем переменную, создаем экземпляр класса String и записываем в него константу-строку.
  • String myStr = String(“Start”); – аналогичен предыдущему: создаем строку из константы
  • String myStr(myCharStr); – создаем объект класса String с помощью конструктра, принимающего на вход массив типа char и создающего из char String.
  • String myStr = String(50); – создаем строку из целого числа (преобразование int to string).
  • String myStr = String(30, H); – создаем строку – представление числа в 16-чной системе (HEX to String)
  • String myStr = String(16, B); – создаем строку – представление числа в двоичной системе (Byte to String).

Каждый раз, когда мы объявляем в коде строку с использованием двойных кавычек, мы создаем неявный объект класса String, являющийся константой. При этом обязательно использование именно двойных кавычек: “String” – это строка. Одинарные кавычки нужны для обозначения отдельных символов. ‘S’ – это символ.

Массивы строк

При работе с большими объемами текстовой информации, например в проектах с LCD дисплеем, бывает удобно использовать массивы строк. Так как строки сами по себе массивы, массивы строк будет двумерным массивом.

В примере ниже, символ звездочки после объявления типа «char*» указывает на то, что это массив указателей. Это необходимо для задания двумерного массива. В данном случае не требуется понимания всех тонкостей работы с указателями.

Пример

 1 char* myStrings[]={"This is string 1", "This is string 2", "This is string 3",
 2 "This is string 4", "This is string 5","This is string 6"};
 3  
 4 void setup(){
 5 Serial.begin(9600);
 6 }
 7  
 8 void loop(){
 9 for (int i = ; i < 6; i++){
10    Serial.println(myStringsi]);
11    delay(500);
12    }
13 }

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;
  • GND.

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • DS ;
  • SCL;
  • SDA;
  • VCC;
  • GND;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307

Важно правильно поставить скорость передачи на 57600 bps

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В  этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но  если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Синтаксис

Ниже приведены варианты объявления и присвоения строк:

1 char Str115]; // Объявление массива символов без присваивания значений
2 char Str28 = {'a', 'r', 'd', 'u', 'i', 'n', 'o'}; //  Объявление массива символов и присвоение значений всем элементам, кроме последнего, компилятор Arduino автоматически добавит символ конца строки
3 char Str38 = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'}; // Явно объявлен завершающий символ
4 char Str4  = "arduino"; // Инициализирование массива строковой константой в двойных кавычках. Компилятор автоматически задаст требуемый размер на массив, равный количеству символов плюс завершающий символ
5 char Str58 = "arduino"; // Инициализирование массива с явным заданием размера и присвоением строковой константы
6 char Str615 = "arduino"; // Инициализирование массива с явным заданием дополнительного размера (с запасом), фактически превышающего размер строковой константы при начальном присвоении

Создание строк в ардуино с помощью String

В ардуино у нас есть несколько способов создать строку, приведем основные:

  • char myCharStr = “Start”; – массив типа char с завершающим пустым символом;
  • String myStr = “Start”; – объявляем переменную, создаем экземпляр класса String и записываем в него константу-строку.
  • String myStr = String(“Start”); – аналогичен предыдущему: создаем строку из константы
  • String myStr(myCharStr); – создаем объект класса String с помощью конструктра, принимающего на вход массив типа char и создающего из char String.
  • String myStr = String(50); – создаем строку из целого числа (преобразование int to string).
  • String myStr = String(30, H); – создаем строку – представление числа в 16-чной системе (HEX to String)
  • String myStr = String(16, B); – создаем строку – представление числа в двоичной системе (Byte to String).

Каждый раз, когда мы объявляем в коде строку с использованием двойных кавычек, мы создаем неявный объект класса String, являющийся константой. При этом обязательно использование именно двойных кавычек: “String” – это строка. Одинарные кавычки нужны для обозначения отдельных символов. ‘S’ – это символ.

Arduino string (c style strings)

For C object Strings an ok place to look is the Arduino c string Reference.

However the above link does not detail the functions available for c-style strings. For that look to a standard reference. This link is good as it orders the functions in the order of most used.

P.S. Have a look at strtok() as this can allow you to process a
command line with multiple commands separated with a delimiter e.g. a
semi-colon — Useful for a more complex serial command decoder.

Comparison of String and c string

The following table shows the difference in memory usage:

Type Flash SRAM
String 3912 248
c string 2076 270
Difference String cf c string +1836 -22

Note: It appears that the String class uses
less SRAM but it, in fact uses the heap and uses more than c string uses
(it is just not easy to measure because it can change all the time as strings are created and destroyed).

Using Class String to control strings is undoubtedly the easiest way
and is very similar to higher level languages such as python but it comes
at a cost — that cost is Flash program memory.

Объединение строк Arduino

Объединить две строки в одну можно различными способами. Эта операция также называется конкатенацией. В ее результате получается новый объект String, состоящий из двух соединенных строк. Добавить к строке можно различные символы:

  • String3 = string1 + 111; // позволяет прибавить к строке числовую константу. Число должно быть целым.
  • String3 = string1 + 111111111; // добавляет к строке длинное целое число
  • String3 = string1 + ‘А’; // добавляет символ к строке
  • String3 = string1 + “aaa”;// добавляет строковую постоянную.
  • String3 = string1 + string2; // объединяет две строки вместе.

Важно осторожно объединять две строки из разных типов данных, так как это может привести к ошибке или неправильному результату

Функция println и отличия от print

Если вы попробовали использовать функцию print(), то уже обратили внимание, что вся информация в мониторе порта выводится в одной строке. Если же мы хотим вывести текст в новых строках, то должны использовать близкого родственника функции – println()

Метод println () класса Serial выполняет ту же функцию, что и print() – он выводит в последовательный порт ASCII-текст.  Аргументы у методов тоже совпадают – мы передаем текст или число с возможным вторым аргументом, определяющим формат. Отличие же println заключается в принудительном добавлении в конце передающейся строки символа новой строки “\r” (ASCII код 13). Суффикс ln обозначает сокращенное слово line (строка). Используя println, мы можем быть уверены, что следующая (но не текущая) строка будет выведена с новой строки.

Например, следующие команды выведут три строки текста, каждое предложение в новой строке.

Serial.println(“Line number  1”);
Serial.println(“Line number  2”);
Serial.println(“Line number  3”);

При формировании строки мы также можем использовать следующие специальные символы: “\0”, “\r”, “\t” (символ табуляции). Табулирование позволяет печатать на экране что-то типа таблицы значений:

Serial.print("Column1\t\t");
Serial.println("Column2");
Serial.print("Cell 11\t\t");
Serial.println("Cel l2");
Serial.print("Cell 21\t\t");
Serial.println("Cel 22");

Объединение строк Arduino

Объединить две строки в одну можно различными способами. Эта операция также называется конкатенацией. В ее результате получается новый объект String, состоящий из двух соединенных строк. Добавить к строке можно различные символы:

  • String3 = string1 + 111; // позволяет прибавить к строке числовую константу. Число должно быть целым.
  • String3 = string1 + 111111111; // добавляет к строке длинное целое число
  • String3 = string1 + ‘А’; // добавляет символ к строке
  • String3 = string1 +  “aaa”;// добавляет строковую постоянную.
  • String3 = string1 + string2; // объединяет две строки вместе.

Важно осторожно объединять две строки из разных типов данных, так как это может привести к ошибке или неправильному результату

Аппаратный модуль TWI

Смотрите следующую схему потока для записи на шину I2C:

Взаимодействие приложения с шиной TWI (I2C) во время типовой передачи

Ссылаясь на таблицу регистров, приведенную выше, операция записи I2C с использованием аппаратного модуля TWI вкратце будет выглядеть следующим образом:

  • Библиотека конфигурирует микросхему ATmega так, что внутренний аппаратный модуль TWI использует свои выводы, которые жестко привязаны к двум аналоговым выводам (4 и 5 на Duemilanove).
  • Библиотека устанавливает значение регистра TWCR для создания состояния .
    • Сначала она проверяет шину I2C, чтобы убедиться, что она свободна. Шина свободна, когда на обеих линиях и SDA, и SCL установлен высокий логический уровень (потому что устройство по умолчанию устанавливает выводы на шине в третье состояние «не подключено». Общий резистор подтягивает сигнал на шине к высокому уровню).
    • Что такое состояние ? Линия тактового сигнала SCL остается в состоянии логической 1, а мастер в это время меняет состояние на линии SDA на логический 0. Это уникальный момент, поскольку во время обычной передачи данных линии SDA изменяет состояние только тогда, когда на линии SCL установлен низкий логический уровень. Момент, когда сигнал на линии данных изменяется на логический 0, а на SCL логическая 1, является сигналом для всех устройств на шине I2C, с которыми мастер собирается начать взаимодействовать.
  • Аппаратный модуль TWI при завершении выполнения действия вызывает прерывание процессора.
  • Библиотека e проверяет состояние по регистру . Предположим, что всё хорошо.
  • Библиотека загружает в регистр адрес ведомого устройства плюс бит «запись». Вместе это значение известно как «SLA+W» («SLave Address plus Write»).
  • Библиотека устанавливает значение регистра для передачи .
  • В случае успеха, библиотека загружает данные в регистр , устанавливает , и данные передаются.
  • Библиотека проверяет состояние по регистру . Предположим, что всё хорошо.
  • Библиотека устанавливает значение регистра для передачи состояния . В состоянии линия SCL освобождается (переходит в высокий логический уровень), и затем линия SDA переходит в состояние логической 1. Обычно линия SDA должна оставаться неизменной, когда на линии SCL установлен высокий логический уровень.

Операция чтения выполняется похожим образом.

string

Description

Text strings can be represented in two ways. you can use the String data type, which is part of the core as of version 0019, or you can make a string out of an array of type char and null-terminate it. This page described the latter method. For more details on the String object, which gives you more functionality at the cost of more memory, see the String object page.

Examples

All of the following are valid declarations for strings.

  char Str1;
  char Str2 = {'a', 'r', 'd', 'u', 'i', 'n', 'o'};
  char Str3 = {'a', 'r', 'd', 'u', 'i', 'n', 'o', '\0'};
  char Str4 = "arduino";
  char Str5 = "arduino";
  char Str6 = "arduino";

Possibilities for declaring strings

  • Declare an array of chars without initializing it as in Str1
  • Declare an array of chars (with one extra char) and the compiler will add the required null character, as in Str2
  • Explicitly add the null character, Str3
  • Initialize with a string constant in quotation marks; the compiler will size the array to fit the string constant and a terminating null character, Str4
  • Initialize the array with an explicit size and string constant, Str5
  • Initialize the array, leaving extra space for a larger string, Str6

Null termination

Generally, strings are terminated with a null character (ASCII code 0). This allows functions (like Serial.print()) to tell where the end of a string is. Otherwise, they would continue reading subsequent bytes of memory that aren’t actually part of the string.

This means that your string needs to have space for one more character than the text you want it to contain. That is why Str2 and Str5 need to be eight characters, even though «arduino» is only seven — the last position is automatically filled with a null character. Str4 will be automatically sized to eight characters, one for the extra null. In Str3, we’ve explicitly included the null character (written ‘\0’) ourselves.

Note that it’s possible to have a string without a final null character (e.g. if you had specified the length of Str2 as seven instead of eight). This will break most functions that use strings, so you shouldn’t do it intentionally. If you notice something behaving strangely (operating on characters not in the string), however, this could be the problem.

Single quotes or double quotes?

Strings are always defined inside double quotes («Abc») and characters are always defined inside single quotes(‘A’).

Wrapping long strings

You can wrap long strings like this:

char myString[] = "This is the first line"
" this is the second line"
" etcetera";

Arrays of strings

It is often convenient, when working with large amounts of text, such as a project with an LCD display, to setup an array of strings. Because strings themselves are arrays, this is in actually an example of a two-dimensional array.

In the code below, the asterisk after the datatype char «char*» indicates that this is an array of «pointers». All array names are actually pointers, so this is required to make an array of arrays. Pointers are one of the more esoteric parts of C for beginners to understand, but it isn’t necessary to understand pointers in detail to use them effectively here.

Example


char* myStrings[]={"This is string 1", "This is string 2", "This is string 3",
"This is string 4", "This is string 5","This is string 6"};

void setup(){
Serial.begin(9600);
}

void loop(){
for (int i = 0; i < 6; i++){
   Serial.println(myStrings);
   delay(500);
   }
}

Преобразование String в массив char

Тип данных Char позволяет объявлять текстовые строки несколькими способами:

  • char myStr1; – в данном случае объявлен массив определенного размера.
  • char myStr2 = {‘a’, b, ‘c’, ‘d’, ‘e’}; – объявлен сам массив. Конечный символ не записанявно, его прибавит сам компилятор.
  • char myStr3 = {‘a’, b, ‘c’, ‘d’, ‘e’’/0’}; – объявлен массив, при этом в конце прописан признак окончания строки.
  • char myStr4 = “abcde”; – инициализация массива строковой постоянной. Размер и завершающий символ добавляются автоматически компилятором.
  • char myStr5 = “abcde”; – инициализация массива с точным указанием его размера.
  • char myStr 6 = “abcde”; – аналогично, но размер указан больше для возможности использования строк большей длины.

Еще раз напомним, что в типе данных char строковые константы нужно записывать в двойные кавычки «Abcde», а одиночные символы – в одинарные ‘a’.

Конвертировать строку в массив сhar array можно при помощи следующего кода:

String stringVar = “111”;

char charBufVar;

stringVar.toCharArray(charBufVar, 20);

Можно сделать обратное преобразование – char to string.

char[] chArray = “start”;

String str(chArray);

Пример преобразования String to const char*. Указание звездочкой char*означает, что это массив указателей.

String stringVar=string (`start);

Char charVar;

stringVar.toCharArray(charVar, sizeof(charVar));

Функции и методы класса String

Для работы со строками в String предусмотрено множество полезных функций. Приведем краткое описание каждой из них:

  • String() – конструктор, создает элемент класса данных string. Возвращаемого значения нет. Есть множество вариантов, позволяющих создавать String из строк, символов, числе разных форматов.
  • charAt() возвращает указанный в строке элемент. Возвращаемое значение – n-ный символ строки.
  • compareTo() – функция нужна для проверки двух строк на равенство и позволяет выявить, какая из них идет раньше по алфавиту. Возвращаемые значения: отрицательное число, если строка 1 идет раньше строки 2 по алфавиту; 0 – при эквивалентности двух строк; положительное число, если вторая строка идет раньше первой в алфавитном порядке.
  • concat() – функция, которая объединяет две строки в одну. Итог сложения строк объединяется в новый объект String.
  • startsWith() – функция показывает, начинается ли строка с символа, указанного во второй строке. Возвращаемое значение: true, если строка начинается с символа из второй строки, в ином случае false.
  • endsWith() – работает так же, как и startsWith(), но проверяет уже окончание строки. Также возвращает значения true и false.
  • equals() – сравнивает две строки с учетом регистра, т.е. строки «start» и «START» не будут считаться эквивалентными. Возвращаемые значения: true при эквивалентности, false в ином случае.
  • equalsIgnoreCase() – похожа на equals, только эта функция не чувствительна к регистру символов.
  • getBytes() – позволяет скопировать символы указанной строки в буфер.
  • indexOf() –  выполняет поиск символа в строке с начала. Возвращает значение индекса подстроки val или -1, если подстрока не обнаружена.
  • lastIndexOf() –выполняет поиск символа в строке с конца.
  • length() – указывает длину строки в символах без учета завершающего нулевого символа.
  • replace() – заменяет в строке вхождения определенного символа на другой.
  • setCharAt() – изменяет нужный символ в строке.
  • substring() – возвращает подстроку. Может принимать два значения – начальный и конечный индексы. Первый является включительным, т.е. соответствующий ему элемент будет включаться в строку, второй – не является им.
  • toCharArray() – копирует элементы строки в буфер.
  • toLowerCase() – возвращает строку, которая записана в нижнем регистре.
  • toUpperCase() – возвращает записанную в верхнем регистре строку.
  • toInt() – позволяет преобразовать строку в число (целое). При наличии в строке не целочисленных значений функция прерывает преобразование.
  • trim() – отбрасывает ненужные пробелы в начале и в конце строки.

Объединение строк Arduino

Объединить две строки в одну можно различными способами. Эта операция также называется конкатенацией. В ее результате получается новый объект String, состоящий из двух соединенных строк. Добавить к строке можно различные символы:

  • String3 = string1 + 111; // позволяет прибавить к строке числовую константу. Число должно быть целым.
  • String3 = string1 + 111111111; // добавляет к строке длинное целое число
  • String3 = string1 + ‘А’; // добавляет символ к строке
  • String3 = string1 +  “aaa”;// добавляет строковую постоянную.
  • String3 = string1 + string2; // объединяет две строки вместе.

Важно осторожно объединять две строки из разных типов данных, так как это может привести к ошибке или неправильному результату

Как вывести свой символ на LCD 1602

Вывести свой символ или кириллическую букву на дисплей поможет таблица знакогенератора (CGROM). Такой вид памяти в Ардуино, как CGRAM, может хранить собственные символы, но размер памяти ограничен и может вместить лишь 8 собственных символов. Один из нестандартных символов, который пригодится для создания домашней метеостанции — знак градуса. Давайте нарисуем символ.

Создаем свой символ для LCD дисплея 1602

Для начала возьмите листок бумаги и нарисуйте на нем таблицу, где будет 5 столбцов и 8 строчек. Далее заштрихуйте в таблице клеточки (смотри фото выше), которые должны высвечиваться на дисплее. Дело в том, что каждый символ на дисплее состоит из пикселей (5 пикселей в ширину и 8 пикселей в высоту). Далее представим наш символ в виде массива данных, состоящего из восьми элементов — восьми строк.

Исходный код программы (скетча)

Arduino

#include <Arduino_FreeRTOS.h>
void TaskBlink1( void *pvParameters );
void TaskBlink2( void *pvParameters );
void Taskprint( void *pvParameters );
void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
xTaskCreate(
TaskBlink1
, «task1»
, 128
, NULL
, 1
, NULL );
xTaskCreate(
TaskBlink2
, «task2»
, 128
, NULL
, 1
, NULL );
xTaskCreate(
Taskprint
, «task3»
, 128
, NULL
, 1
, NULL );
vTaskStartScheduler();
}
void loop()
{
}
void TaskBlink1(void *pvParameters) {
pinMode(8, OUTPUT);
while(1)
{
Serial.println(«Task1»);
digitalWrite(8, HIGH);
vTaskDelay( 200 / portTICK_PERIOD_MS );
digitalWrite(8, LOW);
vTaskDelay( 200 / portTICK_PERIOD_MS );
}
}
void TaskBlink2(void *pvParameters)
{
pinMode(7, OUTPUT);
while(1)
{
Serial.println(«Task2»);
digitalWrite(7, HIGH);
vTaskDelay( 300 / portTICK_PERIOD_MS );
digitalWrite(7, LOW);
vTaskDelay( 300 / portTICK_PERIOD_MS );
}
}
void Taskprint(void *pvParameters) {
int counter = 0;
while(1)
{
counter++;
Serial.println(counter);
vTaskDelay(500 / portTICK_PERIOD_MS); }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

#include <Arduino_FreeRTOS.h>

voidTaskBlink1(void*pvParameters);

voidTaskBlink2(void*pvParameters);

voidTaskprint(void*pvParameters);

voidsetup(){

// initialize serial communication at 9600 bits per second:

Serial.begin(9600);

xTaskCreate(

TaskBlink1

,»task1″

,128

,NULL

,1

,NULL);

xTaskCreate(

TaskBlink2

,»task2″

,128

,NULL

,1

,NULL);

xTaskCreate(

Taskprint

,»task3″

,128

,NULL

,1

,NULL);

vTaskStartScheduler();

}

voidloop()

{
}

voidTaskBlink1(void*pvParameters){

pinMode(8,OUTPUT);

while(1)

{

Serial.println(«Task1»);

digitalWrite(8,HIGH);

vTaskDelay(200portTICK_PERIOD_MS);

digitalWrite(8,LOW);

vTaskDelay(200portTICK_PERIOD_MS);

}

}

voidTaskBlink2(void*pvParameters)

{

pinMode(7,OUTPUT);

while(1)

{

Serial.println(«Task2»);

digitalWrite(7,HIGH);

vTaskDelay(300portTICK_PERIOD_MS);

digitalWrite(7,LOW);

vTaskDelay(300portTICK_PERIOD_MS);

}

}

voidTaskprint(void*pvParameters){

intcounter=;

while(1)

{

counter++;

Serial.println(counter);

vTaskDelay(500portTICK_PERIOD_MS);}

}

Для чего нужен String в ардуино

Стандартным способом работы со строками в языке C является использование массива символов. Это все означало необходимость работы с указателями и понимания адресной арифметики. В ардуино и C++ у программистов появилось гораздо больше возможностей. Все “низкоуровневые” операции по работе со строкой выделены в отдельный класс, а для основных операций даже переопределены операторы. Например, для объединения срок мы просто используем хорошо знакомый знак “+”, а не зубодробильные функции типа malloc и strcpy. С помощью String мы работаем со строкой как с целым объектом, а не рассматриваем его как массив символов. Это позволяет сосредоточиться на логике скетча, а не деталях реализации хранения символов в памяти.

Естественно, у любого “упрощения” всегда есть свои подводные камни. String всегда использует больше оперативной памяти и в некоторых случаях функции класса могут медленнее обрабатываться. Поэтому в реальных больших проектах придется тщательно взвешивать все плюсы и минусы и не забывать, что никто не мешает нам работать со строками в стиле С. Все обычные функции обработки массивов char остаются в нашем арсенале и в arduino.

Заключение о String и ардуино

В этой статье мы рассмотрели основные вопросы использования String для работы со строками arduino. Как показывают примеры, ничего страшного и сложного в этом классе нет. Более того, зачастую мы можем даже не догадываться, что работаем с классом String: мы просто создаем переменную нужного типа, присваиваем ей строку в двойных кавычках. Создав строку, мы используем все возможности библиотеки String: можем без проблем модифицировать строку, объединять строки, преобразовывать string в int и обратно, а также делать множество других операций с помощью методов класса.

В ситуациях, когда скетч большой и перед нами встает дефицит памяти, использовать String нужно осторожно, по возможности заменяя на char*. Впрочем, в большинстве первых проектов начинающего ардуинщика таких ситуаций не много, поэтому рекомендуем использовать String без опаски – это предотвратит появление ошибок адресной арифметики, возникающих при работе с массивами char