Обозначение диода на схеме: виды и характеристики

Содержание

Шаги

Метод 1 из 2:

Осмотр маркировки

  1. 1

    Изучите принцип работы диода. Диод состоит из полупроводников p- и n-типа. Полупроводник n-типа отвечает за отрицательную сторону диода и называется катодом. Полупроводник р-типа является положительной стороной диода и называется анодом.

    • Если положительная сторона источника напряжения соединена с положительной стороной диода (анодом), а отрицательная сторона соединена с отрицательной стороной (катодом), то диод будет проводить ток.
    • Если перевернуть диод обратной стороной, то он не будет пропускать электрический ток (до определенной величины).
  2. 2

    Узнайте, что означают условные обозначения. Диоды обозначаются на схеме символом (—▷|—), который показывает, как его следует устанавливать. Стрелка указывает на вертикальную полосу, из которой выходит линия.
    X
    Источник информации

    Стрелка указывает на положительную сторону диода, а вертикальная линия — на отрицательную. Проще запомнить так: положительная сторона перетекает в отрицательную, а стрелка указывает на направление потока.

  3. 3

    Найдите большую ленту. Если на диоде отсутствуют условные обозначения, найдите на диоде кольцо, ленту или линию. Возле отрицательной стороны (катода) большинства диодов обычно находится большая цветная лента, опоясывающая диод.

  4. 4

    Распознайте положительную сторону светодиода. LED — это светодиод, стороны которого легко различить по его ножкам. Длинная ножка будет положительным концом (анодом).
    X
    Источник информации

    Если ножки были обрезаны, осмотрите внешний корпус светодиода. Электрод, который находится ближе в плоскому краю, является отрицательным (катодом).

Метод 2 из 2:

С помощью мультиметра

  1. 1

    Настройте мультиметр на проверку диода.

    Диод можно проверить и без этого режима на мультиметре. Для этого установите ручку мультиметра в режим для измерения сопротивления (Ω).

    Для этого поверните ручку на условное обозначение диода (—▷|—). В этом режиме мультиметр пропустит через диод немного тока, что облегчит его проверку.

  2. 2

    Подсоедините мультиметр к диоду. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Показания отобразятся на экране мультиметра.
    X
    Источник информации

    • Если на мультиметре есть режим проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то экран покажет наличие напряжения. В противном случае вы ничего не увидите.
    • Если на мультиметре нет режима для проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то дисплей покажет низкое сопротивление. В противном случае на экране отобразится очень сильное сопротивление, которое может быть выражено символами «OL».
  3. 3

    Проверьте светодиод. LED — это светодиод. Поверните ручку на мультиметре в положение для проверки диода. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Если светодиод загорится, значит, положительный щуп касается положительного конца (анода), а отрицательный щуп — отрицательного (катода). Если светодиод не загорится, значит, щупы касаются противоположных концов.

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Способы подключения

Существует несколько стандартных вариантов подключения диода в электрическую цепь. Все они используются в определённых схемах и позволяют достичь требуемого результата.

Прямой вариант

Этот способ включения диода в электрическую цепь называют наиболее простым и часто используемым. В его основе лежит подсоединение положительного полюса к области p-типа, а отрицательного — к n-типа.

Описание работы диода при прямом подключении:

  1. На устройство подаётся электрический ток, под воздействием которого образуется электрическое поле в области между двумя электродами. Его направление будет противоположным по отношению к внутреннему диффузионному полю.
  2. Затем происходит резкое сужение запирающего слоя, которое получается из-за значительного снижения напряжения электрического поля.
  3. Следствием этого станет способность большинства электронов свободно перемещаться из одной области (n-типа) в другую (p-типа).
  4. Во время этого процесса показатели дрейфового тока не изменятся, так как они зависят только от количества заряженных частиц, находящихся в области p-n перехода.
  5. Электроны способны перемещаться из n-области в p-область, что приводит к дисбалансу их концентрации. В одной из областей будет недостаток частиц, а в другой — избыток.
  6. Из-за этого часть электронов перемещается вглубь полупроводника, что становится причиной разрушения его электронейтральности.
  7. В этом случае полупроводник стремится к восстановлению своей нейтральности и начинает получать заряд от подключённого источника питания. Всё это приводит к образованию тока во внешней электроцепи.

Обратный метод

Этот способ подключения диода к общей схеме используется гораздо реже. В его основе лежит изменение полярности внешнего источника питания, который участвует в процессе передачи напряжения.

Особенности функционирования диода при обратном включении:

  1. После включения источника питания в области p-n перехода образуется электрическое поле. Его направление будет одинаковым с внутренним диффузионным полем.
  2. Из-за этого будет происходить расширение запирающего слоя.
  3. Находящееся в области p-n перехода поле будет ускорять движение электронов, но оставлять неизменными показатели дрейфующего тока.
  4. Из-за всех этих действий будет постепенно нарастать обратное напряжение, которое поспособствует стремлению электрического тока к максимальным значениям.

Вам это будет интересно Фен для паяния

https://youtube.com/watch?v=Wx5gthJQQK8

Теория

Цель работы

Ознакомиться с основными фотометрическими
величинами; ознакомиться с принципом работы
фотометра; проверить
выполнение закона Ламберта для источника света

Полупроводниковые диоды и стабилитроны

Выпрямительные диоды и стабилитроны представляют
собой полупроводниковые
приборы с одним электронно-дырочным переходом
(p–n-переходом).

Одним из свойств p–n-перехода является способность
изменять свое сопротивление в зависимости от
полярности
напряжения внешнего источника. Причем разница
сопротивлений при прямом и обратном направлениях тока
через
p–n-переход может быть
настолько велика, что в ряде случаев, например для
силовых диодов, можно считать, что
ток протекает через диод только в одном направлении –
прямом, а в обратном направлении ток настолько мал,
что им
можно пренебречь. Прямое направление – это когда
электрическое поле внешнего источника направлено
навстречу
электрическому полю p–n-
перехода, а обратное – когда направления этих
электрических полей совпадают.
Полупроводниковые диоды, использующие вентильное
свойство p–n-перехода, называются выпрямительными
диодами и
широко используются в различных устройствах для
выпрямления переменного тока.

Вольт-амперная характеристика (ВАХ) идеализированного
p–n-перехода описывается известным уравнением

где \(I_0\) – обратный ток p–n-перехода; \(q\) –
заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) –
постоянная
Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) –
температура в градусах Кельвина.

Графическое изображение этой зависимости
представлено на рис. 1.1.

Вольт-амперная характеристика имеет явно выраженную
нелинейность, что предопределяет зависимость
сопротивления
диода от положения рабочей точки.

Различают сопротивление статическое \(R_{ст}\) и
динамическое \(R_{дин}\). Статическое сопротивление
\(R_{ст}\),
например в точке А (рис. 1.1), определяется как
отношение напряжения \(U_A\) и тока \(I_A\),
соответствующих этой точке: \(R_{ст} =
\frac{U_A}{I_A} = tg{\alpha}\)

Динамическое сопротивление определяется как отношение
приращений напряжения и тока (рис. 1.1):
\(R_{дин} = \frac{\Delta U}{\Delta I}\);

Рис. 1.1

При малых значениях отклонений \(∆U\) и \(ΔI\)
можно пренебречь нелинейностью
участка АВ характеристики и считать его гипотенузой
прямоугольного треугольника
АВС, тогда \(R_{дин} = tgβ\).

Если продолжить линейный участок прямой ветви
вольт-амперной характеристики
до пересечения с осью абсцисс, то получим точку
\(U_0\) – напряжение отсечки, которое
отделяет начальный пологий участок характеристики,
где динамическое сопротивление
\(R_{дин}\) сравнительно велико от круто
изменяющегося участка, где \(R_{дин}\) мало.

При протекании через диод прямого тока
полупроводниковая структура нагревается,
и если температура превысит при этом предельно
допустимое значение, то произойдет
разрушение кристаллической решетки полупроводника и
диод выйдет из строя. Поэтому
величина прямого тока диода ограничивается предельно
допустимым значением
\(I_{пр.max}\) при заданных условиях охлаждения.

Если увеличивать напряжение, приложенное в обратном
направлении к диоду, то
сначала обратный ток будет изменяться незначительно,
а затем при определенной величине
\(U_{проб}\) начнется его быстрое увеличение (рис.
1.2), что говорит о наступлении пробоя p–n-перехода.
Существуют несколько видов пробоя p–n-перехода в
зависимости от
концентрации примесей в полупроводнике, от ширины
p–n-перехода и температуры:

  • обратимый (электрический пробой);
  • необратимые (тепловой и поверхностный пробои).

Необратимый пробой для полупроводникового прибора
является нерабочим и недопустимым режимом.

Рис. 1.2

Поэтому в паспортных данных диода всегда
указывается предельно допустимое
обратное напряжение \(U_{проб}\) (напряжение
лавинообразования), соответствующее началу
пробоя p–n-перехода. Обратное номинальное значение
напряжения составляет обычно
\(0,5\ U_{проб}\) и определяет класс прибора по
напряжению. Так, класс 1 соответствует 100 В
обратного напряжения, класс 2 – 200 В и т. д.

В некоторых случаях этот режим пробоя используют
для получения круто нарастающего
участка ВАХ, когда малому приращению напряжения
\(∆U\) соответствует большое изменение тока
\(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме,
называются
стабилитронами, т. к. в рабочем диапазоне при
изменении обратного тока от \(i_{обр. min}\) до
\(i_{обр. max}\) напряжение на диоде остается почти
неизменным, стабильным. Поэтому для
стабилитронов рабочим является участок пробоя на
обратной ветви ВАХ, а напряжение
пробоя (напряжение стабилизации) является одним из
основных параметров.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Классификация

Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:

  • силовые,
  • опорные (стабилитроны),
  • фотодиоды,
  • импульсные,
  • высокочастотные,
  • параметрические.

Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).

Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.

Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.

Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.

Полупроводниковый диод.

Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.

Знак анода и катода

Каким знаком обозначается «К», каким «А», зависит от того, какая процедура и в какой области рассматривается. В электрохимии есть два устройства, имеющие различие в обозначении знаками: электролизёр и гальванический элемент.

При электролизе (окислительно-восстановительном химическом взаимодействии под влиянием внешнего ИП) минусом «-» обозначают катод. Именно на нём восстанавливаются металлы, из-за избытка электронов. Плюсом «+», в свою очередь, маркируют анод (положительный электрод), где металлы окисляются из-за недостатка отрицательно заряженных частиц.


Знаки зарядов при электролизе

В гальваническом элементе окисление происходит без внешнего воздействия электричества. Если взять в качестве примера медно-цинковую батарею, то большое количество электронов (минус) скапливается на аноде. Они при продвижении по внешней цепи участвуют в восстановлении меди. Значит, в этом случае положительным электродом будет катод.

Внимание! У гальванических элементов плюсом является катод, минусом – анод. У электролизёров наоборот – плюсом считают анод, минусом – катод


Знаки зарядов у гальванической батареи

У полупроводниковых приборов, как знак, так и термин, чётко закреплены за выводами детали. Анод – это «плюс», катод – это «минус» диода.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «~», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

Удачи!

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Принцип работы

Понять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

Что это такое

Катоды и аноды — электрические проводники, которые имеют электронную проводимость. Посредством анода электрический заряд втекает в аппаратуру, а катода — наоборот, истекает. На первом возникает окислительная реакция (называют восстановитель) и отсылает заряженные частицы, на втором — восстановительная реакция (называют окислитель) и принимает заряженные частицы.

Анод и катод в диоде

Если перемещение электрических проводников проходит от восстановления к окислению по цепи извне, возникает источник электроэнергии. Прибор, с помощью которого преобразовывается химическая энергия в электроэнергию, получил название «гальванический элемент».

Чтобы не возникло путаницы, стоит четко усвоить и запомнить отличие плюса и минуса в разных процессах:

В гальванотехнике химические реакции происходят внутри элемента. В электричестве извне не нуждается, так как заряд сам потечет во внешнюю цепь из элемента. В этом случаев катод — положительный, анод — отрицательный.

Схема гальванического элемента

В электролизе необходим внешний источник тока, включенный в разрыв проводника внешней цепи. Внешний источник создаст разность потенциалов между электрическими проводниками, и вне устройства будет вкачивать ток в элемент. На аноде будет плюс, а на катоде — противоположно.

Важно! Чтобы определить, катод и анод — это плюс или минус, нужно запомнить: в гальванотехнике отрицательным становится анод, а катод — положительный. У электролитов — противоположно

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.Условное обозначение диода на схеме На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод

идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Выводы диодаКак проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов.

m.katod-anod.ru

Распознаем полярность у светодиода в корпусе SMD.

Если светодиод выполнен в корпусе SMD, то рассмотреть, что же у него внутри невозможно. Как правило, производители заботятся об электротехниках и делают определенные пометки. Полярность можно распознать по срезу на корпусе, теплоотводу или пиктограмме. Первые два способа больше подходят для больших типоразмеров.

На корпусе таких диодов можно найти конструктивный срез. Именно он указывает на отрицательный контакт (катод). С противоположной стороны, соответственно, будет расположен положительный анод.

Теплоотвод с обратной стороны корпуса также подсказывает полярность. Он смещен к аноду.

На небольшие SMD диоды (например, типоразмер 1206) в качестве подсказки наносят специальные пиктограммы.  Они имеют форму треугольника, буквы П или Т. Выступ обозначает катод.

Полярность светодиода как определить плюс и минус

При использовании светодиодов в создании различных схем их необходимо установить правильно. Пайка в большинстве случаев проблем не создает, определить полярность немного сложнее, если нет опыта работы с тестирующим оборудованием.

Как
определить полярность тестером мультиметром

Проще всего проверить светодиод
мультиметром. При подключении щипов в режиме «прозвонка» к электродам можно
получить 2 результата: светодиод светится и выдает на экран число, зависящее от
цвета излучения, или показывает очень большое число. При первом варианте можно
сделать вывод, что источник света исправен и подключен к мультиметру правильно
(плюс к плюсу, минус к минусу).

Второй метод использования мультиметра –
переключение на проверку сопротивления. Если красный щуп касается плюса, черный
– минуса, на экране появляется значение в пределах 1600–1800.

Если у мультиметра есть отсек PNP, для определения полярности светодиода требуются отсеки E (эмиттер – «+») и C (коллектор – «-»). Источник света светится, если катод вставлен в «C», анод – в «E».

Если используется отсек мультиметра NPN, светодиод светиться, если ножки меняются местами.

По
внешнему виду

В производстве светодиодов используются разные корпусы. Широко применяются DIP-элементы с цилиндрическим корпусом различного диаметра. Изготавливается множество SMD для поверхностного монтажа. Свехяркие источники света отличаются размерами корпусов и кристаллов. Опытный радиолюбитель определяет катод и анод по внешним признакам.

У DIP-элементов:

  • длиннее ножка анода;
  • силуэт в колбе меньше у анода, форма катода напоминает флажок;
  • у источника с мощностью более 1 Вт на ножке анода есть маркировка «+».

У SMD-светодиодов:

  • катод
    обозначается срезом на корпусе;
  • теплоотвод
    на обратной стороне корпуса располагается ближе к аноду;
  • пиктограмма «П»
    к аноду обращена верхней полкой, верх пиктограммы «Т» обращен к катоду.

Некоторые производители наносят на корпуса SMD-светодиодов определенные символы, которые позволяют определить полярность.

Важно! Существуют SMD, изготовленные по другому принципу (некоторые производители не соблюдают стандарты). На сложных моделях всегда имеются обозначения «+» и «−». Любая неполупроводниковая радиолампа (стабилитрон)
состоит из анода, катода и сетки

Катодом всегда служит разогретый электрод,
изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду
(коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением

Любая неполупроводниковая радиолампа (стабилитрон)
состоит из анода, катода и сетки. Катодом всегда служит разогретый электрод,
изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду
(коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением.

Для определения работоспособности стабилитрона
используется мультиметр в режиме прозвона. Если положительный щуп приложить к
аноду, отрицательный – к катоду, стабилитрон откроется, на экране будет видно
значение напряжения. Если поменять щупы местами, стабилитрон закроется, на
экране появится цифра 1.

Путем
подачи питания

Чтобы использовать тестирование с
помощью подключения к питанию, требуется источник с напряжением 3-6 В и
резистор с любой мощностью на 300–470 Ом. Резистор припаивается к одной ножке
мультиметра. Затем нужно коснуться щупами выводов. Светодиод светится, если
плюсовой щуп касается анода, минусовой – катода.

Технической
документации

Большой объем информации (размеры,
цоколевку, электрические параметры) о полупроводниковом источнике света предоставляют
производители в технической документации. Она выдается при покупке больших
партий электронных элементов вместе с другой сопроводительной документацией. Если
покупать один или несколько светодиодов, продавец техдокументацию не
предоставит.

Если известна марка изделия, данные
можно найти в справочниках и сети интернет.

На схеме полупроводниковый источник света обозначается пиктограммой в форме треугольника, на вершине которого начерчена линия, перпендикулярная основанию.  Вершина направлена на катод. Для обозначения светодиода используются 2 стрелки над изображением.

Приближенные модели диодов

В большинстве случаев, для расчетов в электронных схемах, не используют
точную модель диода со всеми его характеристиками. Нелинейность этой
функции слишком усложняет задачу. Предпочитают использовать, так
называемые, приближенные модели.

Приближенная модель диода «идеальный диод + Vϒ»

Самой простой и часто используемой является приближенная модель первого уровня.
Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости Vϒ.

Приближенная модель диода «идеальный диод + Vϒ + rD»

Иногда используют чуть более сложную и точную приближенную модель второго уровня.
В этом случае добавляют к модели первого уровня внутреннее сопротивление диода,
преобразовав его функцию из экспоненты в линейную.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.


прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.


диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.


обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.


обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Виды напряжения

Соответственно состояниям различают два типа напряжения: прямое и обратное. Главный определяющий параметр – сопротивление границы областей электродов.

Вольт-амперная характеристика (ВАХ)

Один из ответов на вопрос о том, что такое диод, – зависимость проходящего через границу p-n тока от полярности подаваемого напряжения и его величины.

Ее показывают на графике:

  • вертикальная ось – прямой и обратный ток (верхняя и нижняя часть) в Амперах;
  • горизонтальная – обратное и прямое напряжение (левая и правая сторона).

Образуется кривая, показывающая значения пропускного и обратного тока.