Что такое активное сопротивление катушки

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

Активное и реактивное сопротивление — сопротивлением в электротехнике называется величина, которая характеризует противодействие части цепи электрическому току. Это сопротивление образовано путем изменения электрической энергии в другие типы энергии. В сетях переменного тока имеется необратимое изменение энергии и передача энергии между участниками электрической цепи.

При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.

В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.

В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.

С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.

Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.

В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.

После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.

Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.

Принятые единицы измерения

При использовании закона Ома для практических расчетов все математические вычисления выполняются в установленных единицах измерений для всех 3-х величин:

  • Сила тока – в амперах (А).
  • Напряжение – в вольтах (В/V).
  • Сопротивление – в омах (Ом).

Исходные данные и другие параметры, представленные в единицах, должны переводиться в общепринятые значения.

Действие основных единиц и физическое соблюдение закона Ома невозможно в следующих ситуациях:

  • Наличие высоких частот, при которых электрическое поле изменяется с большой скоростью.
  • Низкотемпературный режим и сверхпроводимость.
  • Сильно разогретые спирали ламп накаливания, когда отсутствует линейность напряжения.
  • Пробой проводника или диэлектрика, вызванный высоким напряжением.
  • Электронные и вакуумные лампы, заполненные газами.
  • Полупроводники с р-п-переходами, в том числе, диоды и транзисторы.

Сила тока

Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.

Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.

Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.

Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:

I = U/R

Сопротивление

Рассматривая закон ома для участка цепи, нельзя забывать о таком понятии, как сопротивление. Данная величина считается основной характеристикой проводника, поскольку именно сопротивление влияет на качество проводимости. Разные материалы проводят ток лучше или хуже. Это объясняется неоднородностью их структуры, различиями в кристаллических решетках. Поэтому в одних случаях электроны движутся с большей скоростью, а в других – с меньшей.

Собственным электрическим сопротивлением обладают все проводники, находящиеся в твердом, жидком, газообразном и плазменном состоянии. У каждого из них своя характеристика, называемая удельным сопротивлением. Данная величина отражает способность каждого материала к сопротивлению. За эталон принимается проводник длиной 1 м с поперечным сечением 1 м².

По закону Ома на участке цепи эта величина определяется: R = U/I.

Напряжение

Напряжение относится к важным характеристикам электрического тока, протекающего в проводнике. С физической точки зрения, это работа электрического поля, которое перемещает заряд на какое-то расстояние. В электротехнике напряжением считается разность потенциалов между двумя точками участка цепи. На практике эта величина служит для определения возможности подключения к сети потребителей электроэнергии, продолжительность их работы в этом состоянии.

В электрической цепи напряжение возникает следующим образом:

  • Вначале цепь подключается к источнику тока путем соединения с двумя полюсами. Это может быть генератор или батарея.
  • На одном полюсе или клемме – избыточное количество электроном, а на другом – их недостает. Первый условно считается положительным, второй – отрицательным.
  • Электрическое поле источника энергии воздействуют на электроны положительного полюса и самого проводника, заставляя их двигаться в сторону отрицательного полюса и притягиваться к нему. Такое притяжение происходит из-за положительного заряда на этом полюсе, поскольку электроны здесь отсутствуют.
  • Между обеими клеммами возникает разность потенциалов с определенным значением, что приводит к упорядоченному движению электронов в проводниках и подключенных нагрузках. Постепенно избыток электронов положительного полюса уменьшается, соответственно, снижается и потенциал. Характерным примером служит аккумуляторная батарея. При подключении нагрузки, ее потенциал будет падать, вплоть до полной разрядки. Для восстановления первоначальных свойств, потребуется подзарядка от постороннего источника тока.

При неизменной мощности источника энергии, значение напряжения может быть разным под действием следующих факторов:

  1. Материал соединительных проводников. У каждого свой вольтамперный график.
  2. Количество потребителей, подключенных к сети.
  3. Температура окружающей среды.
  4. Качество монтажа самой сети.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Индуктивное сопротивление

Созданное в ходе передачи энергии переменное магнитное поле становится источником реактивного сопротивления подобного вида. Индуктивный вариант в основном зависит от характеристик проходящего тока, диаметра и расстояния между проводами.

Само сопротивление обычно классифицируют следующим образом:

  • зависящее от параметров тока и материала — внутреннее;
  • обусловленное геометрическими особенностями линии — внешнее. В этом случае данный показатель будет постоянной величиной, не зависящей от каких-либо других факторов.

Заводы по производству кабельной продукции всегда указывают в своих каталогах информацию об индуктивном сопротивлении.

Данный параметр обычно определяется следующим выражением:

в котором индуктивный показатель для 1 км провода – , а L – протяженность.

Х километрового участка рассчитывается по следующей формуле:

Где: Dср – расстояние среднее по центральной оси имеющихся проводов, мм; d – диаметр рабочего токопроводника, мм; μт –относительная магнитная проницаемость.

Сопротивление проводов

Электрическое сопротивление является основной характеристикой проводниковых материалов. В зависимости от области применения проводника величина его сопротивления может играть как положительную, так и отрицательную роль в функционировании электротехнической системы. Также, особенности применения проводника могут вызывать необходимость учёта дополнительных характеристик, влиянием которых в конкретном случае нельзя пренебрегать.

Природа сопротивления

Проводниками являются чистые металлы и их сплавы. В металле, фиксированные в единую «прочную» структуру атомы, обладают свободными электронами (так называемый «электронный газ»). Именно эти частицы в данном случае являются носителями заряда. Электроны находятся в постоянном беспорядочном движении от одного атома к другому. При появлении электрического поля (подключении к концам металла источника напряжения) движение электронов в проводнике становится упорядоченным. Движущиеся электроны встречают на своём пути препятствия, вызванные особенностями молекулярной структуры проводника. При столкновении со структурой носители заряда теряют свою энергию, отдавая её проводнику (нагревают его). Чем больше препятствий проводящая структура создаёт носителям заряда, тем выше сопротивление.

При увеличении поперечного сечения проводящей структуры для одного количества электронов «канал пропускания» станет шире, сопротивление уменьшится. Соответственно, при увеличении длины провода таких препятствий будет больше и сопротивление увеличится.

Таким образом, в базовую формулу для вычисления сопротивления входит длина провода, площадь поперечного сечения и некий коэффициент, связывающий эти размерные характеристики с электрическими величинами напряжения и тока (1). Этот коэффициент называют удельным сопротивлением. R= r*L/S (1)

Удельное сопротивление

Удельное сопротивление неизменно и является свойством вещества, из которого изготовлен проводник. Единицы измерения r — ом*м. Часто величину удельного сопротивления приводят в ом*мм кв./м. Это связанно с тем, что величина сечения наиболее часто применяемых кабелей является относительно малой и измеряется в мм кв. Приведём простой пример.

Задача №1. Длина медного провода L = 20 м, сечение S = 1.5 мм. кв. Рассчитать сопротивление провода. Решение: удельное сопротивление медного провода r = 0.018 ом*мм. кв./м. Подставляя значения в формулу (1) получим R=0.24 ома. Вычисляя сопротивление системы питания сопротивление одного провода нужно умножить на количество проводов. Если вместо меди использовать алюминий с более высоким удельным сопротивлением (r = 0.028 ом*мм. кв./м), то сопротивление проводов соответственно возрастёт. Для вышеприведенного примера сопротивление будет равно R = 0.373 ома (на 55 % больше). Медь и алюминий – основные материалы для проводов. Существуют металлы с меньшим удельным сопротивлением, чем удельное сопротивление меди, например серебро. Однако его применение ограничено из-за очевидной дороговизны. В таблице ниже приведены сопротивления и другие основные характеристики проводниковых материалов.

Таблица – основные характеристики проводников

electry.ru

Предисловие

Ладно, начнем издалека… Как вы знаете, все электронные устройства состоят из блоков. Их еще часто называют каскады, модули, узлы и тд. В нашей статье будем использовать понятие “блок”. Например, источник питания, собранный по этой схеме:

состоит из двух блоков. Я их пометил в красном и зеленом прямоугольниках.

В красном блоке мы получаем постоянное напряжение, а в зеленом блоке мы его стабилизируем. То есть блочная схема будет такой:

Блочная схема – это условное деление. В этом примере мы могли бы даже взять трансформатор, как отдельный блок, который понижает переменное напряжение одного номинала к другому. Как нам удобнее, так и делим на блоки нашу электронную безделушку. Метод “от простого к сложному” полностью работает в нашем мире. На низшем уровне находятся радиоэлементы, на высшем – готовое устройство, например, телевизор.

Ладно, что-то отвлеклись. Как вы поняли, любое устройство состоит из блоков, которые выполняют определенную функцию.

– Ага! Так что же получается? Я могу просто тупо взять готовые блоки и изобрести любое электронное устройство, которое мне придет в голову?

Да! Именно на это нацелена сейчас современная электроника 😉 Микроконтроллеры  и конструкторы, типа Arduino, добавляют еще больше гибкости в творческие начинания молодых изобретателей.

На словах все выходит прекрасно, но всегда есть подводные камни, которые следует изучить, чтобы начать проектировать электронные устройства. Некоторые из этих камушков называются входным и выходным сопротивлением.

Думаю, все помнят, что такое сопротивление и что такое резистор. Резистор хоть и обладает сопротивлением, но это активное сопротивление. Катушка индуктивности и конденсатор будут уже обладать, так называемым, реактивным сопротивлением. Но что такое входное и выходное сопротивление? Это уже что-то новенькое. Если прислушаться к этим фразам, то входное сопротивление – это сопротивление какого-то входа, а выходное – сопротивление какого-либо выхода. Ну да, все почти так и есть. И где же нам найти в схеме эти входные и выходные сопротивления?  А вот “прячутся” они в самих блоках радиоэлектронных устройств.

§ 2.9. Закон Ома для электрической цепи переменного тока

Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С (рис. 2.20).

Рис. 2.20

Чему равна амплитуда силы тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = U sin ωt?

Мы видели, что при включении по отдельности в цепь проводника с активным сопротивлением R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами (2.6.2), (2.7.3) и (2.8.4). Амплитуды же напряжений на резисторе, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так:

В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи переменного тока, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах.

Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.

Действительно, квазистационарный ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлением. Однако только на участке с активным сопротивлением колебания напряжения и силы тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний силы тока на π/2 (см. § 2.7), а на катушке индуктивности колебания напряжения опережают колебания силы тока на π/2 (см. § 2.8).

Векторная диаграмма электрической цепи

Для вывода закона Ома в случае электрической цепи переменного тока, изображенной на рисунке 2.20, нужно уметь складывать мгновенные колебания напряжений, сдвинутых по фазе друг относительно друга. Проще всего выполнять сложение нескольких гармонических колебаний с помощью векторных диаграмм, о которых было рассказано в § 1.11. Векторная диаграмма электрических колебаний в цепи позволит нам определить амплитуду силы тока в зависимости от амплитуды напряжения и сдвиг фаз между силой тока и напряжением.

Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока m. Этот вектор изобразим в виде вертикальной стрелки (рис. 2.21). Напряжение на резисторе совпадает по фазе с силой тока. Поэтому вектор mR должен совпадать по направлению с вектором m. Его модуль равен UmR = ImR.

Рис. 2.21

Колебания напряжения на катушке индуктивности опережают колебания силы тока на π/2 и соответствующий вектор и mL должен быть повернут относительно вектора m на π/2. Его модуль равен UmL = IωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор mL следует повернуть налево на π/2. (Можно было бы, конечно, поступить и наоборот.)

Вектор напряжения на конденсаторе mC отстает по фазе от вектора m на π/2 и поэтому повернут на этот угол относительно вектора m направо. Его модуль равен .

Для нахождения вектора суммарного напряжения m нужно сложить три вектора: mR, mL и mC. Вначале удобнее сложить два вектора mL и mC (рис. 2.22).

Рис. 2.22

Модуль этой суммы равен , если . Именно такой случай изображен на рисунке. После этого, сложив вектор mL + mC с вектором mR, получим вектор m, характеризующий колебания напряжения в сети.

По теореме Пифагора (из треугольника АОВ):

или

Из равенства (2.9.2) можно найти амплитуду силы тока в цепи:

Это и есть закон Ома для электрической цепи переменного тока, изображенной на рисунке 2.20.

Благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи (см. рис. 2.20) выражается так:

От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин. Они связаны друг с другом точно так же, как и амплитуды в формуле (2.9.3):

Мгновенное значение силы тока меняется со временем гармонически:

где φc, — разность фаз между силой тока и напряжением в сети. Она зависит от частоты со и параметров цепи R, L, С.

Сдвиг фаз между током и напряжением

Сдвиг фаз φc, между колебаниями силы тока и напряжения равен по модулю углу φ между векторами m и m (см. рис. 2.22). Как следует из этого рисунка,

Согласно рисунку 2.22, сила тока отстает от напряжения по фазе при условии . Поэтому сдвиг фаз φc = -φ и

В частных случаях цепей с активным, емкостным и индуктивным сопротивлениями из этой формулы получаются правильные значения сдвига фаз.

Треугольник сопротивлений

Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений

Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом:На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза.Величина и начальная фаза переменного тока, создаваемого переменным напряжением, зависят не только от величины сопротивлений, образующих электрическую цепь, но и от индуктивности и емкости этой цепи.Активное сопротивление в цепи переменного тока.Строго говоря, любая электрическая цепь обладает, кроме сопротивления, также индуктивностью и емкостью. Если по проводнику проходит ток, то вокруг него возбуждается магнитное поле, т.

е. имеют место явления индуктивности. Ток возникает под действием электрического поля на заряды, следовательно, проводник должен обладать емкостью, так как в диэлектрической среде вокруг него возникает поток смещения.Однако в ряде случаев относительная роль двух из трех параметров  R, L, С в электрической цепи практически незначительна.

Это позволяет рассматривать подобную цепь как обладающую только сопротивлением, или только индуктивностью, или только емкостью.Мы рассмотрим поочередно условия в трех таких простейших цепях переменного тока.В цепи, содержащей только сопротивление г, синусоидальное напряжени u = Um sin ?t источника электроэнергии создает ток:i = u : r = (Um: r ) sin ?tТак как сопротивление r от времени не зависит, то в этой цепи ток совпадает по фазе с напряжением (рис. 1) и изменяется также синусоидально:i = Imsin ?tздесь:Im= Um: rРисунок 1 Кривые мгновенных значений напряжения и тока в цепи,содержащей только сопротивление r.Разделив последнее выражение на , получим формулу закона Омадля действующих значений напряжения и тока:I = U : rКак видно из формулы, этот закон для цепей переменного тока, содержащих только сопротивление r, имеет такой же вид, как и закон Ома для цепи постоянного тока.В цепи переменного тока сопротивление r называется активным сопротивлением. Это сопротивление, в котором электроэнергия преобразуется в другую форму (в теплоту и др.).Оно может существенно отличаться от сопротивления rпри постоянном токе.

Сопротивление для постоянного тока называют омическим, чтобы отличить его от активного сопротивления для переменного тока.Различие между активным и омическим сопротивлениями обуславливается рядом причин. Одна из них – поверхностный эффект, частичное вытеснение переменного тока в поверхностные слои проводника.Чем больше частота переменного тока, тем это вытеснение значительнее. Из-за поверхностного эффекта сопротивлениеrоказывается уже существенно большим, чем вычисленное по формуле:r = ?

(l : S)Поверхностный эффект создается тем, что переменное магнитное поле индуктирует во внешних слоях проводника меньшую ЭДС самоиндукции, чем во внутренней его части.Особенно сильно поверхностный эффект увеличивает активное сопротивление стальных проводов. На активное сопротивление медных и алюминиевых проводов при промышленной частоте поверхностный эффект существенно влияет только при больших сечениях проводов (свыше 25 кв. мм).Кроме поверхностного эффекта, большое увеличение активного сопротивления электрической цепи могут вызывать потери энергии в переменном электромагнитном поле цепи от гистерезиса и вихревых токов.Поделитесь полезной статьей:

https://youtube.com/watch?v=NSxgxMNG2fwrel%3D0%26amp%3Bcontrols%3D0%26amp%3Bshowinfo%3D0

  • electrosam.ru
  • electrono.ru
  • electroandi.ru
  • fazaa.ru

Разновидности катушек индуктивности

Контурные катушки индуктивности

Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность идобротность .

Катушки связи

Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы иколлектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

Вариометры

Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника.

Дроссели

Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Обычно включаются в цепях питания усилительных устройств. Предназначены для защиты источников питания от попадания в них высокочастотных сигналов. На низких частотах они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники.

Сдвоенный дроссель

Сдвоенные дроссели

две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны при тех же габаритных размерах. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C. RC цепь Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU.

Свойства ёмкостей.

Здесь U – напряжение источника питания. Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением. В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов. Сопротивление катушки вычисляется по формуле. Сопротивление конденсатора вычисляется по формуле:

Расчет сопротивления.

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Z = R + i X , где Z – импеданс, R – величина активного сопротивления , X – величина реактивного сопротивления, i – мнимая единица . В зависимости от величины X какого-либо элемента электрической цепи, говорят о трёх случаях:

  • X > 0 – элемент проявляет свойства индуктивности .
  • X = 0 – элемент имеет чисто активное сопротивление .
  • X

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений.

Индуктивное сопротивление (X L ) обусловлено возникновением ЭДС самоиндукции . Электрический ток создает магнитное поле. Изменение тока, и как следствие изменение магнитного поля, вызывает ЭДС самоиндукции, которая препятствует изменению тока. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока. Ёмкостное сопротивление (X C ). Величина ёмкостного сопротивления зависит от ёмкости элемента С и также частоты протекающего тока.