Выбор сечения кабелей
Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:
- при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
- сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
- потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.
Удельное сопротивление
При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:
S = (2*I*L)/((1/p)*ΔU.
В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).
С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.
К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.
Измерение сопротивления кабеля мультиметром
При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:
ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,
где:
- Pа (Pр) – активная (реактивная) мощность;
- Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.
Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.
Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.
Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.
К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.
Выбор сечения проводника по допустимому нагреву
По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).
Выбор кабельных изделий с учетом нагрева
Выбор сечения по потерям напряжения
Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.
Выбор по допустимым потерям
Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.
Как правильно рассчитать сопротивление провода по сечению
Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.
Для правильного расчета минимального сечения необходимо учесть следующие факторы:
- По стандартам ПУЭ падение напряжения не должно быть больше 5%.
- В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
- Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.
Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.
Формулы электрической цепи
Задача решается следующим образом:
Резистентность медного кабеля будет равна:
2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.
Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.
Вам это будет интересно Все о токе и его частоте
Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.
- Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
- От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.
Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.
Основные различия между активным и реактивным сопротивлением
Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается.
Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д.
Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике.
Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL.
Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC.
В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы:
В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе.
Измерения мегаомметром
Сам процесс измерения несложен, но проводить его надо строго соблюдая правила и очередность действий. При поверке создается высокое напряжение, что при небрежном отношении может быть опасным. Потому внимательно читаем правила и строго их придерживаемся.
Подготовка к работе
Перед тем как пользоваться мегаомметром необходимо провести подготовительные работы. Для начала тестируемые цепи отключаются от нагрузки. Если измеряется сопротивление изоляции в домашней проводке, отключаем питание при помощи рубильника или выкручиваем пробки. При измерении кабелей розеточных групп, из розеток вынуть все вилки. При измерении проводки для освещения, из всех осветительных приборов (люстр, бра, точечных светильников) выкрутить лампочки. Только в таком виде — без нагрузки — кабели и провода можно проверять.
Еще один этап подготовки к работе с мегаомметром — подсоединение переносного заземления. Оно необходимо для снятия остаточного напряжения в измеряемых цепях. К шине заземления в щитке крепится медный многожильный провод сечением не менее 1,5 квадрата. Второй его конец зачищается от изоляции, крепится к сухой палке. Провод надо прикрепить так, чтобы медью было удобно прикасаться к проводникам.
Требования по безопасности
На предприятиях измерения мегаомметром могут проводить работники с группой электробезопасности 3 и выше. Даже если измерения проводиться будут дома, надо действовать придерживаясь правил безопасности. Для этого перед тем как пользоваться мегаомметром надо выучить инструкцию. По инструкции надо:
Особое внимание уделите остаточному напряжению. При большой протяженности тестируемой линии накапливается значительный заряд, способный нанести даже летальные повреждения
Подключение мегаомметра к тестируемой линии
В стандартную комплектацию входит три щупа. Один из низ имеет с одной стороны два наконечника. Он используется при измерениях экранированных кабелей для устранения токов утечки (щуп с буквой «Э» цепляется к кабельному экрану).
В верхней части прибора есть три гнезда, в которые подключаются щупы. Они промаркированы буквами:
При подготовке к работе в гнездо «Л» и «З» вставляются одинарные щупы. Так проводится большинство измерений. Только если надо исключить токи утечки берут двойной щуп. Один его наконечник с буквой «Э» вставляют в гнездо с аналогичной надписью, второй — в гнездо «Л».
- Если надо измерить сопротивление изоляции между жилами кабеля, оба щупа цепляем на оголенную часть проводов.
- Если проверяется «пробой на землю», один щуп крепим к проводу, второй — к клемме «земля».
Других вариантов нет. Разве что с описанным выше случаем с экранированным кабелем. Но их в частных домах и квартирах практически не используют. Если все-таки есть кабель с экраном и надо исключить токи утечки, используем щуп с раздвоенным концом, провода экранирующей оплетки скручиваем в жгут и добавляем в общий пучок измеряемых проводов.
Проводим измерения
Теперь конкретно о том, как пользоваться мегаомметром. После того, как установили щупы на мегаомметре, надо выбрать тестовое напряжение. Для этого есть специальные таблицы в которых указывается, каким напряжением необходимо проверять сопротивление изоляции для самых разных приборов и устройств, а также какое сопротивление можно считать «нормальным».
Измеряемый объект | Тестовое напряжение | Минимально допустимое значение сопротивления изоляции | Условия, примечания |
---|---|---|---|
Электропроводка и осветительная сеть | 1000 В | 0,5 МОм и выше | Для помещений с нормальными условиями эксплуатации проверять 1 раз в 3 года, с повышенной опасностью – 1 раз в год |
Стационарные электроплиты | 1000 В | 1 МОм и выше | Плиту разогреть и отключить, проверять не реже 1 раза в год |
Электрощиты, распределительные устройства, токопроводы (магистральные кабели) | 1000-2500 В | Не менее 1 МОм | Проверку проводить с каждой линией отдельно |
Устройства с напряжением до 50 В | 100 В | При измерениях полупроводниковые изделия шунтировать | |
Устройства с напряжением от 50 В до 100 В | 250 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | |
Устройства с напряжением от 100 В до 380 В | 500-1000 В | Смотреть по паспорту изделия, но не менее 0,5 МОм | Электромоторы и другие изделия |
Устройства с напряжением от 380 В до 1000 В | 1000-2500 В | Смотреть по паспорту изделия, но не менее 0,5 МОм |
При проверке сопротивления изоляции кабелей домашней проводки подают напряжение 500 В или 1000 В. Порядок действий такой:
Если измеренное сопротивление изоляции больше либо равно паспортному значению (или тому, что указано в таблице), с устройством/кабелем все нормально. Если изоляция ниже требуемой есть два пути. Первый — искать причину, устранять, измерять по-новой. Второй — заменять.
Принятые единицы измерения
При использовании закона Ома для практических расчетов все математические вычисления выполняются в установленных единицах измерений для всех 3-х величин:
- Сила тока – в амперах (А).
- Напряжение – в вольтах (В/V).
- Сопротивление – в омах (Ом).
Исходные данные и другие параметры, представленные в единицах, должны переводиться в общепринятые значения.
Действие основных единиц и физическое соблюдение закона Ома невозможно в следующих ситуациях:
- Наличие высоких частот, при которых электрическое поле изменяется с большой скоростью.
- Низкотемпературный режим и сверхпроводимость.
- Сильно разогретые спирали ламп накаливания, когда отсутствует линейность напряжения.
- Пробой проводника или диэлектрика, вызванный высоким напряжением.
- Электронные и вакуумные лампы, заполненные газами.
- Полупроводники с р-п-переходами, в том числе, диоды и транзисторы.
Сила тока
Сила тока возникает при наличии частиц со свободными зарядами. Они перемещаются через поперечное сечение проводника из одной точки в другую. Источник питания создает электрическое поле, под действием которого электроны начинают двигаться упорядоченно.
Таким образом, сила тока является количеством электричества, проходящего через определенное сечение за единицу времени. Увеличить этот показатель можно путем увеличения мощности источника тока или изъятия из цепи резистивных элементов.
Международная единица СИ для тока – ампер. Это довольно большая величина, поскольку для человека смертельно опасными считаются всего 0,1 А. В электротехнике малые величины могут выражаться в микро- и миллиамперах.
Кроме того, сила тока может записываться с помощью основной формулы, когда известны значения напряжения и сопротивления. В числом виде она будет гласить следующее:
I = U/R
Сопротивление
Рассматривая закон ома для участка цепи, нельзя забывать о таком понятии, как сопротивление. Данная величина считается основной характеристикой проводника, поскольку именно сопротивление влияет на качество проводимости. Разные материалы проводят ток лучше или хуже. Это объясняется неоднородностью их структуры, различиями в кристаллических решетках. Поэтому в одних случаях электроны движутся с большей скоростью, а в других – с меньшей.
Собственным электрическим сопротивлением обладают все проводники, находящиеся в твердом, жидком, газообразном и плазменном состоянии. У каждого из них своя характеристика, называемая удельным сопротивлением. Данная величина отражает способность каждого материала к сопротивлению. За эталон принимается проводник длиной 1 м с поперечным сечением 1 м².
По закону Ома на участке цепи эта величина определяется: R = U/I.
Напряжение
Напряжение относится к важным характеристикам электрического тока, протекающего в проводнике. С физической точки зрения, это работа электрического поля, которое перемещает заряд на какое-то расстояние. В электротехнике напряжением считается разность потенциалов между двумя точками участка цепи. На практике эта величина служит для определения возможности подключения к сети потребителей электроэнергии, продолжительность их работы в этом состоянии.
В электрической цепи напряжение возникает следующим образом:
- Вначале цепь подключается к источнику тока путем соединения с двумя полюсами. Это может быть генератор или батарея.
- На одном полюсе или клемме – избыточное количество электроном, а на другом – их недостает. Первый условно считается положительным, второй – отрицательным.
- Электрическое поле источника энергии воздействуют на электроны положительного полюса и самого проводника, заставляя их двигаться в сторону отрицательного полюса и притягиваться к нему. Такое притяжение происходит из-за положительного заряда на этом полюсе, поскольку электроны здесь отсутствуют.
- Между обеими клеммами возникает разность потенциалов с определенным значением, что приводит к упорядоченному движению электронов в проводниках и подключенных нагрузках. Постепенно избыток электронов положительного полюса уменьшается, соответственно, снижается и потенциал. Характерным примером служит аккумуляторная батарея. При подключении нагрузки, ее потенциал будет падать, вплоть до полной разрядки. Для восстановления первоначальных свойств, потребуется подзарядка от постороннего источника тока.
При неизменной мощности источника энергии, значение напряжения может быть разным под действием следующих факторов:
- Материал соединительных проводников. У каждого свой вольтамперный график.
- Количество потребителей, подключенных к сети.
- Температура окружающей среды.
- Качество монтажа самой сети.
Реактивное индуктивное и емкостное
Выше рассказывалось о скин-эффекте, имеющем место в прямом проводнике. Если проводник смотан в катушку (обмотку), протекающий по нему переменный ток создает более сильное переменное магнитное поле, и наводимая им ЭДС самоиндукции не просто вытесняет ток во внешние слои проводника, а ощутимо ему противодействует. Такое противодействие катушки называют индуктивным сопротивлением.
Индуктивное сопротивление
Вычисляется индуктивное сопротивление по формуле XL = 2П * f * L, где
- f — частота переменного тока, Гц;
- L — индуктивность катушки, Гн.
Таким образом, чем выше f, тем больше XL. Этим свойством катушки пользуются при фильтрации высокочастотных помех (гармоник) в сети.
Свойства XL, отличающие его от R:
- ток в цепи отстает по фазе от напряжения на 900;
- превращение электроэнергии является обратимым: сначала она преобразуется в магнитное поле (1-я половина полупериода), затем накопленная в нем энергия снова становится электрической (вторая половина).
Обмотки применяются в электромоторах и трансформаторах, потому потребители с такими компонентами имеют значительное индуктивное сопротивление. На его преодоление тратится часть мощности электротока, именуемая реактивной Wр. В противоположность ей, другую часть, совершающую полезную работу, называют активной Wа.
Коэффициент мощности
При сложении обеих составляющих графическим путем, получается треугольник (прямоугольный), в котором полная мощность Wп является гипотенузой. Если угол между ней и вектором активной мощности Wа обозначить через ϕ, то: cosϕ = Wа / Wп.
Для каждого устройства с индуктивным сопротивлением cosϕ обозначается в характеристиках. Также приводится активная мощность, причем выходная, например, на валу электродвигателя. Таким образом, чтобы определить полную потребляемую мощность устройства, следует сделать действие: Wп = Wа / (cosϕ * КПД), где КПД — коэффициент полезного действия прибора.
Необходимость преодолевать реактивное сопротивление, создает значительную дополнительную нагрузку на энергогенерирующее оборудование электростанций. Чтобы разгрузить его, в электросетях применяют установки компенсации реактивной мощности. Они представляют собой конденсаторные батареи.
Емкостным сопротивлением обладают конденсаторы. В цепи постоянного тока этот элемент ток не пропускает, но переменный течет через него относительно свободно, поскольку емкость имеет свойство накапливать в себе заряд.
В 1-й четверти периода она заряжается, во второй — разряжается, в 3-й и 4-й — действия повторяются, но уже с обратной полярностью. При этом он работает подобно индукционной катушке: в 1-й половине полупериода накапливает часть энергии электрогенератора, во 2-й — возвращает ее в цепь.
То есть конденсатор тоже противостоит преобразованию переменного тока — в этом состоит суть емкостного сопротивления. Вычисляют емкостное сопротивление по формуле: Xc = 1 / (2П * f * C), где С — емкость конденсатора, Ф (фарад).
За счет разрядки элемента, ток в цепи опережает напряжение по фазе на 900. На преодоление емкостного сопротивления также расходуется часть полной мощности — реактивная. Установки для ее компенсации содержат индукционные катушки.
Особенности активного сопротивления
В общем виде данный параметр выглядит, как противодействие определенного участка цепи проходящему по нему току. Полученная в результате такого процесса величина участвует в преобразовании энергии и ее переходе в какое-то другое состояние.
Величина активного сопротивления обусловлена эффектом поверхностного типа. Наблюдается процесс своеобразного перемещения тока от центра к поверхности проводника. Сечение кабеля используется не полностью, а возникающее противодействие будет значительно превышать аналогичный омический показатель.
Обратим внимание на такой момент:
Поверхностный эффект имеет незначительную величину в линиях из металлов, относящихся к категории цветных. Активное сопротивление приравнивают к омическому и считают его при условной температуре в +20°С, без учета фактических показателей окружающей среды. В справочниках имеются данные определения для использования в основном выражении R=r0l, с учетом того, что r0 – это номинальное значение искомой величины для 1 км провода, а l – его фактическая протяженность.
А вот в стальных изделиях данный показатель намного выше
Обязательно потребуется брать во внимание, зависящее от сечения явление перемагничивания и влияние таких компонентов, как вихревые токи. На практике обычно при больших нагрузках пользуются справочными данными
При этом, само явление ослабевает в проводниках многопроволочного типа.
Расчет сечения кабеля по мощности и длине + ТАБЛИЦА
Калькулятор расчета сечения кабеля по мощности и току поможет вам рассчитать сечение кабеля, минимально необходимое для безопасной эксплуатации электропроводки, чтобы избежать перегревов, плавления изоляции, короткого замыкания и пожаров.
Калькулятор позволяет производить расчет сечение кабеля по току или мощности, исходя из параметров общей нагрузки и поступающего напряжения. При этом учитываются условия прокладки, материалы изготовления проводов, возможные потери напряжения и критерии выбора проводника. Функционал раздела позволяет также произвести расчет максимального тока и нагрузки на проводник с заданными параметрами и выбрать устройства защиты (автоматические выключатели, дифференциальные автоматы и УЗО).
Как производится расчет сечения кабеля:
- Укажите исходные данные (ток или мощность), напряжение, материал изготовления проводника (медь или алюминий), тип проводки (открытую или закрытую в трубе), количество проводов (при прокладке коммуникации в трубе);
- Отметьте дополнительные условия (длину провода, допустимые потери);
- Нажмите на кнопку «Рассчитать» и сохраните полученные параметры.
Калькулятор расчета сечения кабеля работает в онлайн и в офлайн режиме
Обратите внимание: он носит исключительно рекомендательный характер и не может гарантировать 100% верность подсчетов. Однако чем больше достоверных данных вы введете в соответствующие поля, тем выше будет процент соответствия
Смежные нормативные документы:
- ПУЭ-7 «Правила устройства электроустановок»
- СП 76.13330.2016 «Электротехнические устройства»
- ГОСТ Р 50571.5.52-2011/МЭК 60364-5-52:2009 «Электроустановки низковольтные. Выбор и монтаж электрооборудования»
- ГОСТ 31946-2012 «Провода самонесущие изолированные и защищенные для воздушных линий электропередачи»
- ГОСТ 31947-2012 «Провода и кабели для электрических установок на номинальное напряжение до 450/750 В»
- ГОСТ 6323-79 «Провода с поливинилхлоридной изоляцией для электрических установок»
- ГОСТ 31996-2012 «Кабели силовые с пластмассовой изоляцией на номинальное напряжение 0,66; 1 и 3 кВ»
- ГОСТ 433-73 «Кабели силовые с резиновой изоляцией»