Что такое расчетная мощность?
Под этим определением понимают установленный показатель, позволяющий подключить некое количество единиц техники одновременно. Если превысить их допустимое число, защитная автоматическая система может выйти из строя. Расчет установленной мощности выполняется путем суммирования этого показателя, которым характеризуется каждый подключенный прибор в системе.
Важно! Межэтажное пространство жилого дома снабжено электрощитом и вводным устройством, от которого проложены кабели до каждой квартиры. В случае, когда система располагается в жилом помещении, в него прокладывают кабель с необходимым сечением. Для защиты разводящих линий устанавливают автомат, счетное устройство и щит для равномерного распределения нагрузок на каждой линии
Для защиты разводящих линий устанавливают автомат, счетное устройство и щит для равномерного распределения нагрузок на каждой линии.
Электрощит
Понятие реактивной электроэнергии
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия – это часть полной поступаемой мощности, которая не расходуется на полезную работу.
В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ».
При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации.
Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.
Почему мощность трансформатора измеряют в ква, а не в квт ?
Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.
Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.
Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.
Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.
В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.
Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:
Треугольник мощностей
Чтобы разобраться с реактивной нагрузкой рассмотрим треугольник мощностей.
где Р – активная мощность, которая измеряется в Ватах и используется для совершения полезной работы;
Q – реактивная, которая измеряется в Варах и используется для создания электромагнитного поля;
S – полная мощность используется для расчета электрических цепей.
Для расчета полной мощности применяем теорему Пифагора: S2=P2+Q2. Или с помощью формулы: S=U*I, где U – это показание напряжения на нагрузке, I — показание амперметра, которое включается последовательно с нагрузкой. В расчетах также используется коэффициент мощности – cosφ. На приборах, которые относятся к реактивной нагрузке, обычно указаны активная мощность и cosφ. С помощью этих параметров также можно получить полную мощность.
Иногда на приборах указывается полная мощность, а cosφ не указан. В этом случае применяется коэффициент 0,7.
Что такое мощность (Р) электротока
Электрическая мощность является физической величиной, характеризующей скорость преобразования или передачи электрической энергии. Единицей измерения по Международной системе единиц (СИ) является ватт, в нашей стране обозначается Вт, международное обозначение — W.
Что влияет на мощность тока
На мощность (Р) влияет величина силы тока и величина приложенного напряжения. Расчет параметров электроэнергии выполняется еще на стадии проектирования электрических сетей объекта. Полученные данные позволяют правильно выбрать питающий кабель, к которому будут подключаться потребители. Для расчетов силы электротока используется значения напряжения сети и полной нагрузки электрических приборов. В соответствии с величиной силы электротока выбирается сечение жил кабелей и проводов.
Отличия мощности при постоянном и переменном напряжении
Ведем обозначения электрических величин, которые приняты в нашей стране:
- Р − активная мощность, измеряется в ваттах, обозначается Вт;
- Q − реактивная мощность, измеряется в вольт амперах реактивных, обозначается ВАр;
- S − полная мощность, измеряется в вольт амперах, обозначается ВА;
- U − напряжение, измеряется в вольтах, обозначается ВА;
- I − ток, измеряется в амперах, обозначается А;
- R − сопротивление, измеряется в омах, обозначается Ом.
Назовем основные отличия P на постоянном и Q на переменном электротоке. Расчет P на постоянном электротоке получается наиболее простым. Для участков электрической цепи справедлив закон Ома. В этом законе задействованы только величина приложенного U (напряжения) и величина сопротивления R.
Расчет S (полной мощности) на переменном электротоке производится несколько сложнее. Кроме P, имеется Q и вводится понятие коэффициента мощности. Алгебраически складывая активную P и реактивную Q, получают общую S.
Какая сила тока трехфазной сети
На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.
Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя. Трехфазная система с нейтралью. Трехфазная система с нейтралью
Трехфазная система с нейтралью
Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).
Здесь можно использовать известные данные:
- P — мощность электроприбора, известная из его инструкции по эксплуатации;
- U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).
Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.
Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.
Прибор для измерения мощности — ваттметр
Как узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
Формула мощности в цепи переменного тока
В однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения. В однофазной цепи. В однофазной цепи
В однофазной цепи
В трехфазной цепи
В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.
Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.
Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема. Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости
Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать
Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать
Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.
В трехфазной цепи
В целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.
На что влияет коэффициент мощности?
Чем выше коэффициент мощности, тем лучше, так как меньше величина потерь:
Устройства, подключенные к сети переменного тока, оказывают на нее влияние не только тем, что потребляют из нее энергию, но и тем, что отдают ее в сеть из-за наличия собственной индуктивности и емкости, либо наличием собственной ЭДС (например, у электродвигателя). которая связана с периодическим накоплением-отдачей электрической энергии.
В нагрузке, на 100% потребляющей энергию из сети переменного тока, значение cos φ равно единице. Генератор, полностью отдающий в сеть энергию имеет фактор мощности, равный минус единице. В остальных случаях в сети происходят потери энергии на нагрев проводов, а также генерацию электромагнитного поля.
Так как компьютерная техника, выполняющая вычисления для майнинга криптовалют потребляет очень большие токи, то влияние фактора, определяющего коэффициент мощности очень велико. Оно проявляется не только в потерях электрической энергии, теряющейся на нагрев проводов и создание электромагнитного поля, но и в появлении искажений синусоидальной формы тока в сети, что негативно влияет на другие устройства, подключенные к этой же сети.
В городских условиях, когда к одному сегменту сети подключено множество мощных устройств, блоки питания которых работают в импульсном режиме такое влияние суммируется, что приводит к появлению всплесков напряжения, сбоям в работе компьютеров и другим негативным последствиям.
Для компенсации токов, возникающих из-за влияния фактора мощности (для потребителей это увеличение значения cos φ максимально близко к единице) в импульсных блоках питания устанавливают специальные узлы PFC (Power Factor Control). Подробнее об их работе речь идет в отдельной статье.
Реактивная мощность
Реактивная мощность является основным условием поддержания стабильности напряжения энергосистемы. Предполагается, что достаточный запас реактивной мощности позволит поддерживать целостность энергосистемы в послеаварийных режимах при случайных отказах источников реактивной мощности. Будучи хорошо отлаженной вспомогательной службой, средства обеспечения реактивной мощностью и регулирования напряжения играют жизненно важную роль в функционировании энергетической системы. Масштабные аварийные ситуации обычно возникают в тяжело нагруженных системах, которые не обладают достаточным запасом реактивной мощности. Тяжело нагруженные системы обычно характеризуются высоким потреблением реактивной мощности и потерями реактивной мощности в линии электропередач. При аварийной ситуации активная составляющая мощности существенно не изменяется, тогда, как поток реактивной мощности может измениться весьма значительно.
Это происходит из-за того, что падение напряжения на шине из-за отказа элемента сети приводит к уменьшению потока реактивной мощности от емкости линии и конденсаторов конденсаторной установки. Следовательно, необходимо иметь весьма значительный запас реактивной мощности, чтобы обеспечить потребности в реактивной энергии в послеаварийном режиме. Реактивная мощность, которая может быть поставлена энергосистемой, зависит от конфигурации сети, режима работы и расположения источников реактивной мощности. Реактивная мощность является ключом к решению проблем с сетевым напряжением при работе энергосистемы и должна учитываться при оценке надежности системы.
В методах оценки качества предельных значений реактивной мощности источников принимаются фиксированные максимальные и минимальные значения
Сетевые искажения в аварийной ситуации обычно уменьшают посредством снижения нагрузки с активным характером мощности, уделяя при этом реактивной мощности меньшее внимание. Напряжения в послеаварийном режиме, генерация реактивной мощности и потокораспределения мощности оценивались с использованием анализа чувствительности
Посредством кусочно-линейного оценивания было установлено влияние предельных характеристик оборудования на результаты оценки. Параллельный конденсатор оказывает влияние на надежность распределительной сети. Влияние ограничений напряжения и реактивной мощности на надежность системы было исследовано с помощью метода расчета потокораспределения мощности на модели сети постоянного тока. Рассчитывалась ожидаемая величина снижения электрической энергии из-за недостаточной генерации реактивной мощности и предполагаемое значение отклонений напряжения.
Однако в существующих методиках расчета надежности редко принимается во внимание ряд вопросов. Во-первых, большинство существующих методик пренебрегают возможными отказами источников реактивной мощности, такими как синхронные компенсаторы и статические компенсаторы реактивной мощности
Во-вторых, сетевые искажения из-за дефицита активной мощности не отделены от искажений, возникающих из-за недостаточного количества реактивной мощности при снижении нагрузки в послеаварийном режиме. В-третьих, отсутствуют показатели и соответствующие методы решения вопросов надежности, связанных с недостаточным количеством реактивной мощности. И, наконец, не рассматривается взаимосвязь между активной и реактивной мощностью генератора, определяемой по P–Q диаграммам генератора. Таким образом, существующих показателей надежности недостаточно для проектировщиков и диспетчеров энергосистем для осуществления рационального планирования и эффективного управления.
Предлагаемая методика оценки показателей надежности учитывает дефицит как активной, так и реактивной мощности из-за отказов источников активной и реактивной мощности, таких как генераторы, синхронные компенсаторы и статические компенсаторы. В данной методике рассмотрены дефицит реактивной мощности и связанные с ним отклонения напряжения, возникающие из-за сбоев в источниках реактивной мощности.
Предложены новые показатели надежности, позволяющие учесть влияние дефицита реактивной мощности на надежность системы. Показатели надежности, связанные с дефицитом реактивной мощности отделены от показателей, связанных с дефицитом активной мощности. Предложен «метод подпитки реактивной мощностью» для определения дефицита реактивной мощности и места его возникновения. С использованием P–Q диаграмм мощности выполнено исследование предельного значения реактивной мощности генератора, определяемого по его выходной активной мощности.
Виды
Существует два основных типа показателей:
- Номинальная. Та, которую устройство потребялет за единицу времени. Для холодильника это 150 ватт, для микроволновки, в зависимости от настроек – 600-800 ватт, для лампочки 65 или 99 ватт и пр.
- Стартовая. Формула расчета мощности этого типа не отличается от классической, несмотря на то, что стартовая может превышать на порядок номинальную. К примеру, тот же холодильник в момент старта потребляет до 2 кВт энергии, необходимой на запуск двигателя и всех систем.
Главное, что нужно знать о стартовой мощности – она временная и краткосрочная, но ее нужно обязательно учитывать при создании проводки. Обычно для этого делается запас. К примеру, кабель на 2,5 квадрата выдерживает до 4,5 кВт и на него ставится автомат на 25А. Поэтому, если у вас суммарный коэффициент по линии доходит до 4 или 4.3, то лучше не рисковать и поставить дополнительную линию, чем в один прекрасный момент ваша проводка просто сгорит.
Зная, чему равна мощность электрического тока для каждого устройства, находящегося на линии, выделите те, которые вполне могут работать одновременно. Почитайте о технических характеристиках своих устройств, после чего сложите мощность всех подключенных. Затем добавьте к получившемуся числу 30% на всякие тяги и помехи – вот это и станет запасом для стартовых неприятностей.
Как определить?
Для решения задачи нахождения мощности можно воспользоваться различными способами. Все они доступны для применения даже при знаниях в области физики и электротехники на уровне школьной программы.
Чаще мощность находят через определение тока, иногда можно обойтись без промежуточных процедур и определит ее сразу.
Смотрим в техпаспорт
Обычно потребляемая мощность указывается в паспорте или описании устройства и дублируется на фирменной табличке-шильдике. Последняя находится на задней стенке корпуса или его основании.
В случае отсутствия описания этот параметр можно узнать по интернету, для чего достаточно воспользоваться поиском по названию устройства.
Указываемая производителем техники мощность относится к пиковой и потребляется от сети только при полной нагрузки, что встречается достаточно редко. Образовавшаяся разница рассматривается как запас. На нормативном уровне этот запас определяют через коэффициент мощности.
Закон Ома в помощь
Мощность большинства бытовых электрических устройств можно довольно точно оценить экспериментально-расчетным путем с привлечением известного еще со средней школы закона Ома. Этот эмпирический закон связывает между собой напряжение, ток и сопротивление R нагрузки как:
P = U2/R. U = 230 В, а сопротивление измеряется тестером. Далее следует простой расчет по формуле P = 48 400/R Вт.
Например, при R = 200 Ом получаем мощность Р = 240 Вт.
Метод не учитывает так называемое реактивное сопротивление прибора, которое создается в первую очередь входными трансформаторами и дросселями, и поэтому получаемая оценка дает некоторое завышение.
Используем электросчетчик
При определении мощности по счетчику можно поступить двумя различными способами. В обоих случаях от бытовой сети должен питаться только тестируемый прибор. Все без исключения остальные потребители должны быть отключены.
При первом подходе для замера мощности привлекается оптический индикатор счетчика, интенсивность вспышек которого пропорциональна потребляемой мощности. Коэффициент пропорциональности указан на лицевой панели в единицах imp/kWh или имп/кВтч, рисунок 1, где imp – количество импульсов (вспышек индикатора) на один киловатт час.
Лицевая панель бытового счетчика электроэнергии с оптическим индикатором.
После включения исследуемого устройства необходимо начать считать вспышки индикатора на протяжении 15 или 20 минут. Затем полученное значение умножается на 3 или на 4 (при 20- или 15-минутном интервале замера, соответственно) и делится на коэффициент с лицевой панели. Результат выкладки дает мощность прибора в кВт, который в ряде случаев умножением на 1000 удобно перевести в Ватты.
При втором подходе также используется 15- или 20-минутный интервал времени, но расход электроэнергии определяется уже по цифровой шкале. Например, при разности показаний за 20 минут 0,2 кВт×час мощность агрегата составляет 0,2 × 3 = 0,6 кВт или 600 Вт.
Прибор для для определения мощности «Ваттметр».
Современный бытовой измеритель мощности или ваттметр удобен для использования, так как:
- включается непосредственно в разрыв цепи, для чего снабжен вилкой и розеткой, см. рисунок 2;
- оборудован легко читаемым цифровым индикатором и снабжен внутренними цепями автоматической настройки, что исключает ошибки в показаниях;
- отличается хорошими массогабаритными показателями.
Прибор готов к работе немедленно после включения.
Единственный его недостаток – узкая специализация, поэтому этот прибор редко встречается в домашнем хозяйстве.
Об электрической мощности, расходуемой на нагрузке в цепи с постоянным напряжением
Мощность P в цепях постоянного тока (DC, Direct Current) можно подсчитать, умножив величину проходящего тока I на напряжение U.
Формула, отображающая величину электрической мощности в зависимости от протекающего постоянного тока и напряжения выглядит так:
P, ватт = I*U
Диаграмма, показывающая взаимную зависимость мощности, напряжения, тока и сопротивления в цепях постоянного тока:
При необходимости,можно выразить мощность P через сопротивление R и ток I:
P = I2*R
либо через напряжение U и сопротивление R:
P = U2/R
Для переменного тока (AC, Alternating Current) подсчет мощности значительно сложнее, так как он меняет свою величину и направление с течением времени. Сопротивление нагрузки, питающейся от переменного тока, имеет не только активную составляющую R, но и реактивную, связанную с индуктивными и емкостными явлениями:
Трёхфазное или однофазное подключение
В зависимости от того, какой тип подключения используют, определение потребляемой мощности производится по-разному.
В однофазной сети потребляемая энергия считается по простейшей формуле:
P=U∙I∙cosϕ,
где cosϕ – коэффициент мощности, характеризующий сдвиг фаз между током и напряжением в реактивной нагрузке.
Мощность 3 х фазной сети является суммой потребления по каждой фазе в отдельности. Формула мощности 3 х фазного тока имеет следующий вид:
Pобщ=Uа∙Iа∙cosϕа+ Ub∙Ib∙cosϕb+ Uc∙Ic∙cosϕc,
где U, I, cosϕ – напряжение, сила тока и коэффициент мощности в каждой фазе, соответственно.
К сведению. Видно, что в общем случае трехфазное соединение требует большее количество приборов учета.
Иногда посчитать потребление энергии можно по упрощенному варианту. При симметричном потреблении, например, при подключении асинхронного двигателя, токи потребления одинаковы, и формула принимает следующий вид:
P=3Uф∙Iф∙cosϕ=√3Uл∙Iл∙cosϕ,
где:
- Uф, Iф – фазные напряжение и ток;
- Uл, Iл – линейные напряжение и ток.
Асинхронный двигатель
Почему мощность трансформатора измеряют в ква, а не в квт ?
Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.
Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.
Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.
Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.
https://youtube.com/watch?v=QBPe-8daSOs
В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы — нагрева, освещения, звучания, вращения и т.д.
Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:
Резистивная
Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.
ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это. Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах
Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах.
Ёмкостная
Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.
Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.
Смешанная
Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.
Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.
Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.
Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.
Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:
S(полная мощность)=P(активная мощность)/k(коэффициент мощности)
Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.
Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.
Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.
Учет реактивной мощности двигателей
70% мощностей современного предприятия зависит от электродвигателейИсточник youtube.com
Теперь давайте посмотрим, как вычисляется активная энергия для тех же электродвигателей, от которых на 70-80% зависит работоспособность современного предприятия – они крутят насосы, станки, вентиляторы, конвейеры и т.д. и т.п. Раз это так, то кто-то должен постоянно следить за тем, чтобы потребление мощности не стало вдруг необоснованно завышенным. Конечно, осуществлять такой контроль, скорее всего, будет компьютер, но не без участия человека (инженера).
Более всего реактивная энергия мощности тратится попусту в тех случаях, когда двигатель работает на холостых оборотах и если для насосов или конвейеров это ничтожная часть, то для станков – весьма ощутимое разбазаривание реактива. Но, порог наиболее эффективной работы электродвигателей находится в пределах 60-100%, а при более низких показателях бесполезный расход энергии все больше и больше приближается к значению холостого хода. О чем это говорит? О том, что при проектировании цеха не следует завышать его мощности – на практике это пойдёт только во вред производству.
Активная, реактивная и полная мощность.
Заключение
Хороший инженер, зная о полной мощности генератора, двигателя может добиться высокого экономического эффекта для своего предприятия. Если учесть, что монтаж приборов компенсации реактивной мощности в целом составляет от 12 до 50% от оплаты энергетикам, то эта затея окупится где-то в течение года. В дальнейшем такая установка начинает приносить прибыль.
Виды энергии
Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.
Активная
Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.
Вам это будет интересно Особенности проекта электроснабжения
Активно емкостная нагрузка формула
Емкостная
Этот вид превращает в течении определенного времени энергию электрического тока в электрополе, а далее превращает ее в электрический ток. А также, здесь сила тока будет опережать напряжение.
В качестве примера может быть конденсатор. К сожалению, встретить полные реактивные нагрузки невозможно ни в одном приборе. Каждый вид не имеет коэффициент полезного действия 100%, потому что существуют потери энергии в воздухе и прочее. Потому чаще всего используется название активно-реактивной работы.
Индуктивная
Данный вид превращает энергию в магнитное поле, а далее меняет ее в электрический ток. Сила тока в этом случае будет отставать от напряжения. Для примера можно взять индуктивную катушку или датчик дросселя на автомобиле.
Функционирование выпрямителей