Что такое фаза и ноль
К вам 220 Вольт приходит по двум проводам. Иногда с ними бывает в связке еще и третий провод желто-зеленого цвета – это земля. Этот провод используется для обеспечения безопасности. В старых домах такого провода нет. Земля в 90% случаев обозначается как желто-зеленый провод. Другие провода могут иметь различную окраску, но чаще всего стараются ноль маркировать синим проводом, а фазу – ярким цветом. Например, красным.
Обозначение фазы, нуля и земли на проводе
Итак, по одному проводу течет фаза, по другому – ноль. Ноль – это провод для съема электрического тока с фазы. Ноль не представляет опасности для человека, но лучше все-таки не экспериментировать! В фазе напряжение очень быстро изменяется сначала от какого-то максимального значения (для 220 Вольт это значение равняется 310 Вольт), потом падает до нуля, и потом идет в минус и достигает значения в -310 Вольт и потом снова до нуля и снова до 310 Вольт. Итак, за секунду он успевает проделать эту операцию 50 раз, так как генератор на ГЭС, ТЭС или АЭС крутится именно с такой скоростью.
осциллограмма 220 В
Правила перевода единиц
В инструкциях ко многим приборам попадаются обозначения в вольт-амперах
Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях
Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:
- с помощью тестера;
- используя токоизмерительные клещи;
- производя вычисления на калькуляторе;
- с помощью специальных справочников.
Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.
Однофазная электрическая цепь
В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.
Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:
Как перевести мощность кВА в кВт?
Перевод кВА в кВт | например, 1 кВА * 0,8 = 0,8 кВт |
Перевод кВт в кВА | например, 0,8 кВт /0,8 = 1 кВА |
В чём разница между кВА и кВт или в чем отличие кВА от кВт?
Значения кВА и кВт — единицы измерения мощности, первая — полной, вторая — активной. При активной нагрузке (ТЭН, лампа накаливания и тд.) эти мощности одинаковы (в идеале) и разницы нет. При иной нагрузке (эл.двигатели, компьютеры, вентильные преобразователи, индукционные электропечи, сварочные агрегаты и другие нагрузки) появляется реактивная составляющая и полная мощность становится больше активной, потому как она равна корню квадратному из суммы квадратов активной и реактивной мощности.
Вольт-ампер (ВА) и Киловольт-ампер (кВА) — это единица полной мощности переменного тока, обозначается ВА (кВА) или VA (kVA). Полная мощность переменного тока определяется как произведение действующих значений тока в цепи (в амперах) и напряжения на её зажимах (в вольтах).
Ватт (Вт) или Киловатт (кВт) — это единица мощности. Названа в честь Дж. Уатта, обозначается Вт или W. Ватт -это мощность, при которой за 1 сек совершается работа, равная 1 джоулю. Ватт как единица электрической (активной) мощности равна мощности не изменяющегося электрического тока силой 1 А при напряжении 1 Вольт.
Косинус фи (cos φ) — это коэффициент мощности, который представляет собой отношение активной мощности к полной мощности, совокупный показатель, говорящий о присутствии в электросети линейных и нелинейных искажений, появляющиеся при подключении нагрузки. Максимально возможное значение косинуса «физ> — единица.Расшифровка коэффициента мощности (cos φ) :
- 1 оптимальное значение
- 0.95 хороший показатель
- 0.90 удовлетворительный показатель
- 0.80 средний показатель (характерно для современных электродвигателей)
- 0.70 низкий показатель
- 0.60 плохой показатель
Онлайн калькулятор перевода кВА в кВт:
Введите в нужное поле число и нажмите «Перевод», нажав на «Очистить», Вы очистите оба поля ввода значения мощности.При вводе дробных чисел в поле кВа и кВт в качестве разделителя используйте точку вместо запятой.
Если попроще, то кВт — полезная мощность, а кВА — полная мощность.
кВА-20%=кВт или 1кВА=0,8кВт. Для того, чтобы перевести кВА в кВт, требуется от кВА отнять 20% и получится кВт с малой погрешностью, которую можно не учитывать.Пример: на ИБП CyberPower указана мощность 1000ВА, а нужно узнать, какую мощность он потянет в кВт.
Для этого 1000ВА * 0,8( средний показатель)=800 Вт (0,8 кВт) или 1000 ВА — 20%=800 Вт (0,8 кВт). Таким образом, для перевода кВА в кВт, применима формула:
P=S * Сosf, гдеP-активная мощность (кВт), S-полная мощность (кВА), Сos f- коэффициент мощности.Как перевести кВт в кВаТеперь разберем как получить полную мощность (S) указанную в кВА. Предположим, что на электрогенераторе указана мощность 4 кВт, а вам требуется перевести данные показаний в кВА, следует 4 кВт / 0,8=5 кВА. Таким образом для перевода кВт в кВА, применима формула:
S=P/ Сos f, гдеS-полная мощность (кВА), P-активная мощность (кВт), Сos f- коэффициент мощности.
Интересные примеры*:
Наименьшее измеряемое напряжение составляет порядка 10 нВ.
Разность потенциалов на мембране нейрона – 70 мВ.
Напряжение на обычной пальчиковой батарейке типа АА – 1,5 В (постоянное).
Силовое питание компьютерных компонентов имеет напряжение – 5 В, 12 В (постоянное).
Напряжение электрооборудования автомобилей – 12 В, для тяжелых грузовиков – 24 В (постоянное).
Напряжение в аккумуляторах автомобилей – 12/24 В (постоянное).
Напряжение в блоке питания ноутбука и жидкокристаллических мониторов – 19 В (постоянное).
«Безопасное» пониженное напряжение в сети в опасных условиях – 36-42 В (переменное).
Напряжение в телефонной линии (при опущенной трубке) – 50 В (постоянное).
Напряжение в электросети Японии – 100 / 172 В (переменное трехфазное).
Напряжение в домашних электросетях США – 120 / 240 В (сплит-фаза) (переменное трехфазное).
Напряжение в бытовых электросетях России – 220 / 380 В (переменное трехфазное).
Разряд электрического ската – до 200-250 В (постоянное).
Разряд электрического угря – до 650 В (постоянное).
Напряжение на свече зажигания автомобиля – 10-25 кВ (импульсное).
Напряжение в контактной сети трамвая, троллейбуса – 600 В (660 В) (постоянное).
Напряжение контактного рельса в метрополитене – 825 В (постоянное).
Напряжение в контактной сети железных дорог – 3 кВ (постоянное), 25 кВ (переменное).
Напряжение в магистральных ЛЭП – 110, 220, 330, 500, 750 и 1150 кВ (переменное трехфазное).
Самое высокое постоянное напряжение, полученное в лаборатории – 25 МВ.
Молния имеет напряжение от 100 МВ и выше (постоянное).
* в скобках указан тип напряжения.
Примечание: Фото https://www.pexels.com, https://pixabay.com
Найти что-нибудь еще?
карта сайта
напряжение сколько питание 1 380 5 6 18 12 220 вольт интернет магазин купить аккумулятор шуруповерт каталог трансформатор 2 3 24 вольта лампа светодиод блок питания вольт цена схема спб ток генератор преобразователь своими руками
Коэффициент востребованности
827
максимально допустимая мощность на одной фазе
где то на форуме увидел информацию о том что на одну фазу нельзя вешать более 11кВт. Верно ли это, и в каком нормативном документе оговаривается? как быть если получается превышение этой величины?
Заранее благодарен за ответы
Нет такого документа.
У Вас тех.условия есть?
нет тех условий, забыл оговорить что выделяемая мощность требуется на квартиру, в щите на площадке стоит автомат на 40А.
Берите ТУ на нужную мощность — и если там пропишут однофазное подключение на 14кВт или больше, тогда дружно удивимся.
Просто интересно, что можно в квартире включить на 10 Квт . Может ДКсТ -10000.
Это не проблема — был бы ток
Интегральный стабилизатор и стабилитрон
На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!
Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:
Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать здесь.
U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения ;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений ;-).
Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:
Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.
Теперь берем стабилитрон на Uстабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.
Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.
Сколько Вольт-ампер в Мегаватт:
1 Вольт-ампер = 1.0*10 -6 Мегаватт1 Мегаватт = 1000000 Вольт-ампер
Вольт-ампер | ||||||
Вольт-ампер | 1 | 10 | 50 | 100 | 500 | 1 000 |
Мегаватт | 1.0*10 -6 | 1.0*10 -5 | 5.0*10 -5 | 0.0001 | 0.0005 | 0.001 |
Мегаватт | ||||||
Мегаватт | 1 | 10 | 50 | 100 | 500 | 1 000 |
Вольт-ампер | 1000000 | 10000000 | 50000000 | 100000000 | 500000000 | 1000000000 |
Выделите и нажмите Ctrl+C на своей клавиатуре чтобы скопировать данный код. Вы можете использовать его как активную ссылку на текущую страницу.
‘);> //—> Формула:
P — мощность; U — напряжение; I — сила тока.
Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
Для сложных расчетов по переводу нескольких единиц измерения в требуемую (например для математического, физического или сметного анализа группы позиций) вы можете воспользоваться универсальными конвертерами единиц измерения.
На этой странице представлен самый простой онлайн переводчик единиц измерения амперы в мегаватты. С помощью этого калькулятора вы в один клик сможете перевести А в МВт и обратно.
Ватт
(русское обозначение:Вт , международное:W ) — единица измерения мощности, а также теплового потока, потока звуковой энергии, мощности постоянного электрического тока, активной и полной мощности переменного электрического тока, потока излучения и потока энергии ионизирующего излучения в Международной системе единиц (СИ) . Единица названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта (Ватта), создателя универсальной паровой машины.
В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ватт пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ватта. Например, обозначение единицы измерения энергетической яркости «ватт на стерадиан-квадратный метр» записывается как Вт/(ср·м 2 ).
Ватт как единица измерения мощности был впервые принят на Втором Конгрессе Британской Научной ассоциации в 1882 году. До этого при большинстве расчётов использовались введённые Джеймсом Уаттом лошадиные силы, а также фут-фунты в минуту. В Международную систему единиц (СИ) ватт введён решением XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом .
Воздушные линии
Согласно устоявшемуся определению, воздушная линия электропередач — это устройство, предназначенное для передачи или распределение электроэнергии по проводам, находящимся в воздухе. Кабеля этой сети закреплены на опорах с помощью кронштейнов, изоляторов и арматуры. Отдельные участки воздушных линий (ВЛ) могут проходить по мостам или путепроводам. Состоят такие конструкции из следующих элементов:
- Провода. Прочные изолированные кабеля, изготовленные из меди, стали, алюминия или их сплавов-проводников. Могут состоять из нескольких жил. Отличаются друг от друга параметрами сечения, бывают изолированными и неизолированными. Провода для ВЛ обязательно должны быть прочными и устойчивыми к механическим воздействиям.
- Опоры. Изготавливают из металла, железобетонных блоков, дерева или композитных материалов. Обеспечивают необходимое расстояние между проводами и землёй. Состоят из фундамента, стойки, подкосов и растяжек. Особенности строения конструкций зависят от предназначения (некоторые из них перенаправляют ток, замыкают электросеть, служат в качестве проводников и так далее). Высота самых больших опор может достигать до 300 метров. Их стараются максимально адаптировать под местность, учитывая все особенности ландшафта.
- Траверсы. Особые элементы арматуры, задача которых — закрепить провода так, чтобы обеспечить соблюдение нужного расстояния между разноимёнными фазами. Бывают разных форм и размеров — всего насчитывается около 20 разновидностей весом от 10 до 50 кг. Определить тип можно по маркировке. Поверхность изделий окрашена или оцинкована.
- Изоляторы. Нужны для обеспечения надёжного и безопасного крепления проводов. Должны быть прочными и теплостойкими. Различаются по назначению и способу крепления к траверсам — точную модель можно узнать, посмотрев на маркировку. Изготавливаются из изолирующих материалов, таких как фарфор, стекло и различные полимеры.
- Другая арматура. К ней относятся зажимы, подвесы, крепёжный устройства, планки, распорки прочие детали. Они могут использоваться уменьшения вибрации линии, предотвращения изломов и каких-либо других целей.
- Изоляционные и защитные механизмы. Среди них можно выделить гирлянды изоляторов, заземляющие контуры, молниеотводы, вентильные разрядники, гасители вибрации и прочие структуры.
Вам это будет интересно Как сделать трансформатор 220 на 12 вольт своими руками
Согласно действующему регламенту, все ВЛ должны проходить техобслуживание раз в полгода и каждый год осматриваться электриками и инженерами. Иногда проводятся также внеочередные проверки сети — это происходит в связи с пожарами, наводнениями, сильными похолоданиями и прочими природными и техногенными авариями, а также после аварийного выключения. Во время осмотров происходит устранение таких проблем:
- наличие на проводах посторонних предметов;
- обрывы, перегорания или другие повреждения отдельных проводков;
- отклонения в регулировке стрел провеса на более чем 5% от проектных;
- механические повреждения или перекрытие изоляторов, разрядников, гирлянд и прочих функциональных элементов;
- поломки опор.
Кроме того, рабочие обязаны следить за соблюдением правил, относящихся к охранной зоне объекта. У обычных ЛЭП она ограничивается 2 метрами вокруг сооружения, но у высоковольтных линий может достигать 10—55. В охранной зоне запрещается высаживать деревья и кустарники, выбрасывать мусор, проводить земляные работы и возводить любые сооружения, ограничивающие доступ к ВЛ. Любое строительство в этой области необходимо согласовывать с ответственными лицами обслуживающего предприятия.
Количество изоляторов на линиях электропередач (в коридоре воздушных линий)
Количество изоляционных изоляторов в наземных волноводах на металлических и железобетонных носителях в чистом воздухе (с нормальным загрязнением воздуха).
Тип изолятора по ГОСТ | Линия электропередачи 35 кВ | 110 кВ | ВЛ 150 кВ | ВЛ 220 кВ | ВЛ 330 кВ | 500 кВ |
PF6-A (P-4,5) | 3 | 7 | 9 | 13 | 19 | — |
PF6-B (PM-4.5) | 3 | 7 | 10 | 14 | 20 | — |
PF6-B (PFE-4,5) | 3 | 7 | 9 | 13 | 19 | — |
(ПФЭ-11) | — | 6 | 8-е место | 11 | 16 | 21 |
PF16-A | — | 6 | 8-е место | 11 | 17 | 23 |
PF20-A (PFE-16) | — | — | — | 10 | 14 | 20 |
(ПФ-8.5) | — | 6 | 8-е место | 11 | 16 | 22 |
(Р-11) | — | 6 | 8-е место | 11 | 15 | 21 |
PS6-A (PS-4.5) | 3 | 8-е место | 10 | 14 | 21 | — |
PS-11 (PS-8.5) | 3 | 7 | 8-е место | 12-е место | 17 | 24 |
PS16-A | — | 6 | 8-е место | 11 | 16 | 22 |
PS16-B | — | 6 | 8-е место | 12-е место | 17 | 24 |
PS22-A | — | — | — | 10 | 15 | 21 |
PS30-A | — | — | — | 11 | 16 | 22 |
Перевод ампер в киловатты
Сейчас в Интернете есть множество специальных программ, в которых прямо онлайн можно, подставив свои данные, произвести нужные расчеты. Но если по какой-то причине подключиться к Интернету невозможно, а сделать расчет необходимо в данный момент, достаточно произвести простые арифметические действия, чтобы получить искомый результат.
Пример 1 – перевод для однофазной сети 220 В
Чтобы рассчитать, например, предельную мощность автоматического однополюсного реле с номинальным током 16А, производим расчет по формуле:
P = U x I
Подставляя в формулу цифровые значения получаем:
Р = 220В х 16А = 3520Вт = 3,5КВт
То есть реле-автомат, который можно установить в эту электрическую цепь, должен выдерживать нагрузку подключенных приборов не ниже 3,5 КВт.
Так же можно подсчитать сечение провода, например, для тостера на 1,5 КВт:
I = P : U = 1500 : 220 = 7А
Но при этом достаточно важным фактором является то, что при подборе проводов нужно учитывать материал используемого проводника. Так, используя медный провод, необходимо знать, что он выдержит нагрузки вдвое большие, чем алюминиевый провод такого же сечения.
Пример 2 – обратный перевод в однофазной бытовой сети
Теперь рассмотрим усложненную задачу, когда в сети задействовано несколько подключенных электрических устройств, для которых нужно подобрать автоматическое реле, оптимально выдерживающее мощность подключенных приборов, например, когда одновременно подключены:
- 2 лампы накаливания по 100 Вт;
- бытовой обогреватель мощностью 2 кВт;
- телевизор мощностью 0,5 кВт.
Чтобы подсчитать общую мощность подключенных к сети приборов, работающих одновременно, нужно их мощность в киловаттах перевести в ватты и суммировать данные:
100+100+2000+500= 2700Вт или 2,7кВт
Показатель силы тока в этом конкретном случае будет:
I = P : U = 2900Вт : 220В = 13,2А
То есть, в имеющемся примере расчета, необходимо установить автомат с номинальным током, который равен или превышает полученное значение. По расчетам, выбирая однофазное стандартное реле, вполне достаточно поставить сюда автомат на 16А.
Пример 3 – расчет для трехфазной сети ампер в киловатт
Делая расчет перевода одних единиц в другие, в этом примере меняется только формула расчета. Для примера возьмем автомат с номинальным током 20А и произведем расчет, какую мощность сети он выдержит:
Р = √3 х 380В х 20А = 13148 = 13,1 кВт
То есть, исходя из полученных данных, трехфазный автомат на 20А сможет выдержать нагрузку 13,1 КВт.
Пример 4 – обратный перевод в трехфазной сети
Когда мы знаем мощность прибора, подключенного к трехфазной сети, то вычислить оптимальный ток для автомата не составит особого труда. Возьмем прибор на 13кВт, что в ваттах составит 13000 Вт.
Сила тока составит I = 13000: (√3 х 380) = 20А
Получается, что для подключения такого трехфазного прибора нужен автомат не менее 20А.
Сопротивление медного провода постоянному току
Сопротивление провода зависит от удельного сопротивления ρ, которое измеряется в Ом·мм²/м. Величина удельного сопротивления определяет сопротивление отрезка провода длиной 1 м и сечением 1 мм².
Сопротивление того же куска медного провода длиной 1 м рассчитывается по формуле:
R = (ρ l) / S, где (3)
R – сопротивление провода, Ом,
ρ – удельное сопротивление провода, Ом·мм²/м,
l – длина провода, м,
S – площадь поперечного сечения, мм².
Сопротивление медного провода равно 0,0175 Ом·мм²/м, это значение будем дальше использовать при расчетах.
Из формулы (3) следует, что для отрезка медного провода сечением 1 мм² и длиной 1 м сопротивление будет 0,0175 Ом. Для длины 1 км – 17,5 Ом. Но это только теория, на практике всё хуже.
Ниже приведу табличку, рассчитанную по формуле (3), в которой приводится сопротивление медного провода для разных площадей сечения.
Таблица 0. Сопротивление медного провода в зависимости от площади сечения
S, мм² | 0,5 | 0,75 | 1 | 1,5 | 2,5 | 4 | 6 | 10 |
R для 1м | 0,035 | 0,023333 | 0,0175 | 0,011667 | 0,007 | 0,004375 | 0,002917 | 0,00175 |
R для 100м | 3,5 | 2,333333 | 1,75 | 1,166667 | 0,7 | 0,4375 | 0,291667 | 0,175 |
Как перевести вольты и ватты и наоборот
Чтобы правильно выполнить задачу, связанную с переводом вольтов в ватты, можно руководствоваться следующим алгоритмом:
- В руководстве по эксплуатации электроприбора нужно найти значение мощности. Зачастую компании указывают эту величину в вольт-амперах. Это обозначение показывает максимальное количество потребляемой электроэнергии. Так оно приравнивается к значению мощности.
- Определить КПД источника питания по особенностям конструктивного исполнения и количеству подключенных к нему приборов. Как правило, этот коэффициент устанавливается в диапазоне от 0,6 до 0,8.
- Перевести вольтамперные показатели в Вт: узнать активную мощность энергетического оборудования, предназначенного для снабжения бесперебойным питанием.
Важно! Вычислить количество ватт достаточно перемножением вольт-ампер на КПД. Наглядное изображение напряжения и тока. Наглядное изображение напряжения и тока
Наглядное изображение напряжения и тока
Перевод из Вт в В проходит по обратной схеме: ватты нужно разделить на коэффициент полезного действия.
При выборе источника питания от завода-изготовителя не всегда бывает понятно, сколько мощности выдает прибор. Поэтому рекомендуется изучить технические параметры, указанные в инструкции, чтобы осуществить корректный перевод из одной величины в другую.
Выбираем по мощности
Перед выбором сечения кабеля по мощности надо рассчитать ее суммарное значение, составить перечень электроприборов, находящихся на территории, к которой прокладывают кабель. На каждом из устройств должна быть указана мощность, возле нее будут написаны соответствующие единицы измерения: Вт или кВт (1 кВт = 1000 Вт). Затем потребуется сложить мощности всего оборудования и получится суммарная.
Если же выбирается кабель для подключения одного прибора, то достаточно информации только о его энергопотреблении. Можно подобрать сечения провода по мощности в таблицах ПУЭ.
Таблица 1. Подбор сечения провода по мощности для кабеля с медными жилами
Таблица 2. Подбор сечения провода по мощности для кабеля с алюминиевыми жилами
Кроме того, надо знать напряжение сети: трехфазной соответствует 380 В, а однофазной — 220 В.
В ПУЭ дана информация и для алюминиевых, и для медных проводов. У обоих есть свои преимущества и недостатки. Достоинства медных проводов:
- высокая прочность;
- упругость;
- стойкость к окислению;
- электропроводность больше, чем у алюминия.
Недостаток медных проводников — высокая стоимость. В советских домах использовалась при постройке алюминиевая электропроводка. Поэтому если происходит частичная замена, то целесообразно поставить алюминиевые провода. Исключение составляют только те случаи, когда вместо всей старой проводки (до распределительного щита) устанавливается новая. Тогда есть смысл применять медь. Недопустимо, чтобы медь с алюминием контактировали напрямую, т. к. это приводит к окислению. Поэтому для их соединения используют третий металл.
Можно самостоятельно произвести расчет сечения провода по мощности для трехфазной цепи. Для этого надо воспользоваться формулой: I=P/(U*1.73), где P — мощность, Вт; U — напряжение, В; I — ток, А. Затем из справочной таблицы выбирается сечение кабеля в зависимости от рассчитанного тока. Если же там не будет необходимого значение, тогда выбирается ближайшее, которое превышает расчетное.
Коэффициент мощности (косинус «фи»)
Коэффициент мощности (косинус «фи») представляет собой соотношение средней мощности переменного тока и произведения действующего напряжения и силы тока. Максимально возможное значение косинуса «фи» — единица. Выражаясь научным языком, при синусоидальном переменном токе этот коэффициент идентичен косинусу фазового угла между синусоидами напряжения и тока. При этом характеристики электрической цепи будут следующими: r – активное сопротивление, Z – полное сопротивление; соответственно, Сos ф – угол сдвига фаз,
Сos ф = r/Z.
В случаях, если электрическая цепь с активным сопротивлением включает нелинейные участки, то кривые напряжения и тока исказятся, и значение коэффициента мощности будет менее единицы.
Существует несколько определений коэффициента мощности. Первое из них гласит, что косинус «фи», как было отмечено выше, представляет собой угол сдвига фаз между кривыми напряжения и тока, а также является соотношением активной и полной энергий:
Сos «фи»= P/S,
где Р – активная мощность (Вт), S – полная мощность (ВА).
Коэффициент мощностей – совокупный показатель, говорящий о присутствии в электросети линейных и нелинейных искажений, которые появляются при подключении нагрузки.
Наиболее распространенные расшифровки коэффициента мощности:
- 1 — оптимальное значение;
- 0.95 — хороший показатель;
- 0.90 — удовлетворительный показатель;
- 0.80 — средний показатель (характерно для современных электродвигателей);
- 0.70 — низкий показатель;
- 0.60 — плохой показатель.
Открытая и закрытая прокладка проводов
Как все мы знаем, при прохождении тока по проводнику он нагревается. Чем больше ток, тем больше тепла выделяется. Но, при прохождении одного и того же тока, по проводникам, с разным сечением, количество выделяемого тепла изменяется: чем меньше сечение, тем больше выделяется тепла.
В связи с этим, при открытой прокладке проводников его сечение может быть меньше — он быстрее остывает, так как тепло передается воздуху. При этом проводник быстрее остывает, изоляция не испортится. При закрытой прокладке ситуация хуже — медленнее отводится тепло. Потому для закрытой прокладке — в кабель каналах, трубах, в стене — рекомендуют брать кабель большего сечения.
Выбор сечения кабеля с учетом типа его прокладки также можно провести при помощи таблицы. Принцип описывали раньше, ничего не изменяется. Просто учитывается еще один фактор.
Выбор сечения кабеля в зависимости от мощности и типа прокладки
И напоследок несколько практических советов. Отправляясь на рынок за кабелем, возьмите с собой штангенциркуль . Слишком часто заявленное сечение не совпадает с реальностью. Разница может быть в 30-40%, а это очень много. Чем вам это грозит? Выгоранием проводки со всеми вытекающими последствиями. Потому лучше прямо на месте проверять действительно ли у данного кабеля требуемое сечение жилы (диаметры и соответствующие сечения кабеля есть в таблице выше). А подробнее про определение сечения кабеля по его диаметру можно прочесть тут.
Каждый мастер желает знать… как рассчитать сечение кабеля для той или иной нагрузки. С этим приходится сталкиваться при проведении проводки в доме или гараже, даже при подключении станков — нужно быть уверенным, что выбранный сетевой шнур не задымится при включении станка…
Я решил создать калькулятор расчета сечения кабеля по мощности, т.е. калькулятор считает потребляемый ток, а затем определяет требуемое сечение провода, а также рекомендует ближайший по значению автоматический выключатель.
Силовые кабели ГОСТ 31996—2012
Расчет сечения кабеля по мощности производится в соответствии с таблицами нормативного документа ГОСТ 31996—2012 «Кабели силовые с пластмассовой изоляцией». При этом сечение указывается с запасом по току во избежания нагрева и возгорания провода, работающего на максимальном токе. А также я ввел коэффициент 10%, т.е. к максимальному току добавляется еще 10% для спокойной работы кабеля
Например, берем мощность нагрузки 7000 Вт при напряжении 250 Вольт, получаем ток 30.8 Ампер (добавив про запас 10%), будем использовать медный одножильный провод с прокладкой по воздуху, в результате получим сечение: 4 кв.мм., т.е. кабель с максимальным током 39 Ампер. Кабель сечением 2.5 кв.мм. на ток 30 Ампер использовать не рекомендуется, т.к. провод будет эксплуатироваться на максимально допустимых значениях силы тока, что может привести к нагреву провода с последующим разрушением электро изоляции.
Таблица сечения кабеля по току и мощности для медного провода
1,5 | 19 | 4,1 | 16 | 10,5 |
2,5 | 27 | 5,9 | 25 | 16,5 |
4 | 38 | 8,3 | 30 | 19,8 |
6 | 46 | 10,1 | 40 | 26,4 |
10 | 70 | 15,4 | 50 | 33,0 |
16 | 85 | 18,7 | 75 | 49,5 |
25 | 115 | 25,3 | 90 | 59,4 |
35 | 135 | 29,7 | 115 | 75,9 |
50 | 175 | 38,5 | 145 | 95,7 |
70 | 215 | 47,3 | 180 | 118,8 |
95 | 260 | 57,2 | 220 | 145,2 |
120 | 300 | 66 | 260 | 171,6 |
Таблица сечения алюминиевого провода по потребляемой мощности и силе тока
2,5 | 20 | 4,4 | 19 | 12,5 |
4 | 28 | 6,1 | 23 | 15,1 |
6 | 36 | 7,9 | 30 | 19,8 |
10 | 50 | 11 | 39 | 25,7 |
16 | 60 | 13,2 | 55 | 36,3 |
25 | 85 | 18,7 | 70 | 46,2 |
35 | 100 | 22 | 85 | 56,1 |
50 | 135 | 29,7 | 110 | 72,6 |
70 | 165 | 36,3 | 140 | 92,4 |
95 | 200 | 44,0 | 170 | 112,2 |
120 | 230 | 50,6 | 200 | 132,0 |
Калькулятор расчета сечения кабеля
Онлайн калькулятор предназначен для расчета сечения кабеля по мощности.
Вы можете выбрать требуемые электроприборы, отметив их галочкой, для автоматического определения их мощности, либо ввести мощность в ватах (не в киловатах!) в поле ниже, затем выбрать остальные данные: напряжение сети, металл проводника, тип кабеля, где прокладывается и калькулятор произведет расчет сечения провода по мощности и подскажет какой автоматический выключатель поставить.
Надеюсь, мой калькулятор поможет многим мастерам.
Расчет сечения кабеля по мощности:
Требуемая мощность (выберите потребителей из таблицы):
Занимаясь прокладкой электропроводки в новом доме или заменой старой во время ремонта, каждый домашний мастер задается вопросом: а какое сечение провода нужно? И вопрос этот имеет большое значение, поскольку именно от правильного выбора сечения кабеля, а также материала его изготовления во многом зависит не только надежная работа электроприборов, но и безопасность всех членов семьи.
Батарейка типа крона 9в
Классифицировать данные элементы будем по химическому составу и бренду. А также перечислим под какими цифровыми маркировками он скрывается.
На сегодняшний день существуют следующие марки этого источника питания:
- GP
- Duracell
- Космос
- Энерджайзер или Energizer
- Трофи
- Neda 1604 9v
- Camelion
- Pleomax
- Varta
- Robiton
- Panasonic
- Toshiba
Как можно видеть из списка производством элемента питания типа крона занимаются множество компаний.
По химическому составу можно выделить следующие типы:
Щелочные кроны или алкалиновые. Основная их особенность заключается в долгом сроке службы и высокой цене. Выдерживают сильные нагрузки.
Солевые марганцево цинковые. Данные источники питания производились еще в 19 веке. Через некоторое время их полностью заменили солевые элементы. Электролитам служит раствор хлорида аммония.
Литий железо-дисульфидные. Исполняются с твердым плюсовым электродом. Делают из пирита. Способны прекрасно работать при температуре минус 40 градусов.
Воздушно-цинковые. Работают, когда цинк окисляется кислородом. Имеют большую емкость, достаточно экологичны.
Марганцево-литьевые. Электрод создан из диоксида марганца. В итоге после завершения химической реакции образуется оксид лития.
Литий-тионил-хлоридные. Работают в экстремальных температурных условиях. За счет этого их часто используют военные и ученые.
Аккумуляторные батарейки типа крона
Основное отличие подобных элементов питания от обычных заключается в множественных перезарядках. Зарядка осуществляется через специальное устройство.
Литий ионные или Li-ION. Достаточно эффективные батареи с высокой производительностью. Емкость подобных элементов достигает 700 миллиампер часов. Лучше всего они работают при комнатной температуре.
Никель кадмиевые батарейки Ni-Cd имеют 120 мА*ч. Перезаряжать их можно до 1000 раз. Стоимость достаточно низкая.
Металлогидридные элементы NI-MN. Емкость 170 – 300. Безопасны, без примесей металлов.
Li-Po. Данные источники энергии являются последней разработкой ученых. Работают на основе импульсного преобразования. Перезаряжать можно любым источником где есть 5 вольт. Поэтому их легко можно подзаряжать от компьютера.
Батарея 9в типа крона на корпусе может иметь такую маркировку:
MX1604; MN1604; 1604A; 6LR61; 6LF22; AM6; E-Block; PP3; 9V Brick Battery; 1604; 6R61; 6F22.
Аккумуляторный элемент 7Д-0,125 (7Д-0,1, 7Д-0,11).