Содержание
- Светодиод SMD 5630: особенности и характеристики
- Зачем нужна маркировка
- Расчёт мощности для выбора блока питания
- Корпуса чип-компонентов
- О многослойных платах
- Маркировка SMD-компонентов
- Маркировка импортных smd
- Маркировка smd компонентов — резисторы
- Зарубежная маркировка SMD
- Группа смд корпусов по их названию
- Виды записи
- 2-1 2-2 2-3 2-4
- Маркировка транзисторов в соответствии с советской системой классификации.
- DIP светодиоды
- Группа – 4
Светодиод SMD 5630: особенности и характеристики
Светодиод SMD 5630 – представляет класс высокоэффективных светодиодов средней мощности, предназначенных для поверхностного монтажа.
SMD 5630 производства Philips, Epistar, Samsung отличаются высоким коэффициентом цветопередачи, что позволяет конструировать на их основе светильники для качественного освещения внутри помещений.
В качестве примера рассмотрим светодиод LUXEON 5630 Mid-Power, выпускаемый компанией Philips lumileds.
Конструктивные особенности
SMD 5630 выполнен в корпусе размером 5,6х3,0х0,9 мм.
Электрический контакт осуществляется через 4 вывода, как показано на рисунке.
Они имеют следующее назначение:
- 1 – катод;
- 2 – катод;
- 3 – анод;
- 4 – не задействован.
По центру нижней части корпуса SMD 5630 предусмотрена контактная площадка размером 1,62х1,28 мм, предназначенная для эффективного отвода тепла от излучающего кристалла.
Во время монтажа она обязательно должна быть припаяна к печатной плате. При этом контакт теплоотвода электрически должен быть изолирован от анода и катода.
Для визуального определения анода и катода со стороны выводов катода на люминофоре имеется срез.
Технические характеристики
Белые светодиоды SMD 5630 на номинальном токе 100 мА излучают световой поток от 32 лм (2700К) до 36 лм (6500К). При этом падение напряжения на p-n-переходе может варьироваться от 2,9 до 3,4 В.
Для своих светодиодов Philips lumileds гарантирует коэффициент цветопередачи CRI не ниже 80 ед. и угол рассеивания света 2ϴ1/2 равный 120°.
Для пайки рекомендуется использовать низкотемпературные оловянные сплавы, придерживаясь международного стандарта JEDEC J-020B. Пайку светодиодов следует производить при температуре не выше 260°C на протяжении не более 10 сек.
Зависимость прямого напряжения от протекающего тока показана на вольт-амперной характеристике (t=25°C). Из приведенного графика следует, что падение напряжения на номинальном токе для большинства белых светодиодов SMD 5630 составляет 3,1 В. Яркость светодиода напрямую зависит от соблюдения его температурного режима работы. Как видно из графика повышение температуры в точках припоя до 85°C вызывает снижение светового потока примерно на 15%
В связи с этим очень важно избегать перегрева кристалла. Например, светодиодную ленту на SMD 5630 нужно обязательно клеить на алюминиевый профиль. На следующем графике показана зависимость светового потока от величины прямого тока
Полная светоотдача обеспечивается на токе 100 мА. При этом производитель светодиодов делает акцент на том, что замеры в контрольных точках с последующим построением характеристики производились при температуре 25°C
На следующем графике показана зависимость светового потока от величины прямого тока. Полная светоотдача обеспечивается на токе 100 мА. При этом производитель светодиодов делает акцент на том, что замеры в контрольных точках с последующим построением характеристики производились при температуре 25°C.
Область применения
Так же как и SMD 5730, светодиоды SMD 5630 устойчивы к вибрации и резким перепадам температуры (-40/+65°C), что в значительной мере расширяет их сферу применения.
Благодаря высоким эксплуатационным показателям, данный тип светодиодов устанавливают в светильники уличного, промышленного и аварийного освещения. В розничной торговой сети можно свободно купить светодиодные ленты и модули на 12 В, а также линейки на 220 В, собранные на базе SMD 5630.
Опираясь на технические данные, радиолюбителям будет несложно произвести расчёты и своими руками сделать подсветку на светодиодах SMD 5630.
К сожалению, найти в продаже фирменные светодиоды форм-фактора 5630 непросто. Вместо них на рынке превалируют китайские аналоги с сильно заниженными техническими характеристиками.
Такое несоответствие параметров объясняется установкой в корпус 5,6х3,0 мм кристалла значительно меньших размеров, который не может длительно пропускать ток в 150 мА.
Поэтому производители светодиодных ламп и лент, собранных на поддельных SMD 5630, подбирают рабочий ток на своё усмотрение, в результате чего снижается срок службы изделия.
Зачем нужна маркировка
Современному радиолюбителю сейчас доступны не только обычные компоненты с выводами, но и такие маленькие, темненькие, на которых не понять что написано, детали. Они называются “SMD”. По-русски это значит “компоненты поверхностного монтажа”. Их главное преимущество в том, что они позволяют промышленности собирать платы с помощью роботов, которые с огромной скоростью расставляют SMD-компоненты по своим местам на печатных платах, а затем массово “запекают” и на выходе получают смонтированные печатные платы. На долю человека остаются те операции, которые робот не может выполнить. Пока не может.
Маркировка на практике
Применение чип-компонентов в радиолюбительской практике тоже возможно, даже нужно, так как позволяет уменьшить вес, размер и стоимость готового изделия. Да ещё и сверлить практически не придётся
Другое важное качество компонентов поверхностного монтажа заключается в том, что благодаря своим малым размерам они вносят меньше паразитных явлений
Дело в том, что любой электронный компонент, даже простой резистор, обладает не только активным сопротивлением, но также паразитными ёмкостью и индуктивностью, которые могут проявится в виде паразитных сигналов или неправильной работы схемы. SMD-компоненты обладают малыми размерами, что помогает снизить паразитную емкость и индуктивность компонента, поэтому улучшается работа схемы с малыми сигналами или на высоких частотах.
Разнообразные корпуса транзисторов.
Маркировка SMD компонентов
SMD компоненты все чаще используются в промышленных и бытовых устройствах. Поверхностный монтаж улучшил производительность по сравнению с обычным монтажом, так как уменьшились размеры компонентов, а следовательно и размеры дорожек. Все эти факторы снизили паразитические индуктивности и емкости в электрических цепях.
Код | Сопротивление |
101 | 100 Ом |
471 | 470 Ом |
102 | 1 кОм |
122 | 1.2 кОм |
103 | 10 кОм |
123 | 12 кОм |
104 | 100 кОм |
124 | 120 кОм |
474 | 470 кОм |
Маркировка импортных SMD
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Будет интересно Диод 1n4007: характеристики, маркировка и datasheets
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Расчёт мощности для выбора блока питания
Залог надёжной работы любой светодиодной ленты – это правильно подобранный блок питания. Выбирать БП для одноцветной led-ленты на SMD 5050 следует по двум параметрам: выходному напряжению и мощности, которую он способен выдать в нагрузку. Выходное напряжение БП должно совпадать с напряжением питания светодиодной ленты. В большинстве случаев оно равно 12 В, реже 24 В. Мощность рассчитывается исходя из длины ленты и её плотности. Для облегчения расчётов существует специальная таблица, где указана мощность потребления 1 метра с учётом типа светодиодов и плотности монтажа. Касательно ленты на SMD 5050 имеем следующие данные:
- 30 led/m – 7,2 Вт;
- 60 led/m – 14,4 Вт;
- 120 led/m – 28,8 Вт;
- 240 led/m – 57,6 Вт.
Здесь значения мощности указаны для режима максимальной яркости. Это значит, что RGB-лента, работая в режиме одно цвета, будет потреблять энергии в 3 раза меньше, т.к. задействован будет только 1 из 3 кристаллов.
Мощность БП определим по формуле:
- P1м – мощность потребления одного метра, Вт;
- N – общая длина всех отрезков, подключаемых к БП, м;
- K – коэффициент запаса по мощности. Обычно К=1,2.
Для подключения RGB-светодиодной ленты на SMD 5050 кроме блока питания понадобится RGB-контроллер. Как правильно выбрать RGB-контроллер, в каких случаях нужен усилитель сигнала и какая схема подключения лучше? Ответы на эти вопросы можно найти в статье «Подключение RGB-лент разной длины».
Корпуса чип-компонентов
Достаточно условно все компоненты поверхностного монтажа можно разбить на группы по количеству выводов и размеру корпуса:
выводы/размер | Очень-очень маленькие | Очень маленькие | Маленькие | Средние |
2 вывода | SOD962 (DSN0603-2), WLCSP2*, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) | SOD323, SOD328 | SOD123F, SOD123W | SOD128 |
3 вывода | SOT883B (DFN1006B-3), SOT883, SOT663, SOT416 | SOT323, SOT1061 (DFN2020-3) | SOT23 | SOT89, DPAK (TO-252), D2PAK (TO-263), D3PAK (TO-268) |
4-5 выводов | WLCSP4*, SOT1194, WLCSP5*, SOT665 | SOT353 | SOT143B, SOT753 | SOT223, POWER-SO8 |
6-8 выводов | SOT1202, SOT891, SOT886, SOT666, WLCSP6* | SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) | SOT457, SOT505 | SOT873-1 (DFN3333-8), SOT96 |
> 8 выводов | WLCSP9*, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) | WLCSP16*, SOT1178 (DFN2110-9), WLCSP24* | SOT1176 (DFN2510A-10), SOT1158 (DFN2512-12), SOT1156 (DFN2521-12) | SOT552, SOT617 (DFN5050-32), SOT510 |
Конечно, корпуса в таблице указаны далеко не все, так как реальная промышленность выпускает компоненты в новых корпусах быстрее, чем органы стандартизации поспевают за ними.
Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если выводов нет, то на корпусе есть контактные площадки либо небольшие шарики припоя (BGA). Также в зависимости от фирмы-производителя детали могут могут различаться маркировкой и габаритами. Например, у конденсаторов может различаться высота.
Большинство корпусов SMD-компонентов предназначены для монтажа с помощью специального оборудования, которое радиолюбители не имеют и врядли когда-нибудь будет иметь. Связано это с технологией пайки таких компонентов. Конечно, при определённом упорстве и фанатизме можно и в домашних условиях паять BGA-микросхемы.
Типы корпусов SMD по названиям
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Из всего этого зоопарка чип-компонентов для применения в любительских целях могут сгодиться: чип-резисторы, чип-конденсаторы , чип-индуктивности, чип-диоды и транзисторы, светодиоды, стабилитроны, некоторые микросхемы в SOIC корпусах. Конденсаторы обычно выглядят как простые параллелипипеды или маленькие бочонки. Бочонки — это электролитические, а параллелипипеды скорей всего будут танталовыми или керамическими конденсаторами.
О многослойных платах
Монтаж в аппаратуре с SMD компонентами часто бывает достаточно плотным. Поэтому и дорожек самим платам надо больше, чтобы при дальнейшей эксплуатации не возникало проблем. На одну поверхность все дорожки влезть не могут, потому и был разработан многослойный вариант плат.
В плате будет больше слоёв, если само оборудование применяют достаточно сложное. Прямо внутри платы размещаются сами дорожки, увидеть их практически невозможно. Платы компьютеров и мобильных телефонов — пример использования подобных технологий на практике.
Обратите внимание! При перегреве многослойных плат они просто вздуваются, как пузырь. Межслойные связи начинают рваться, из-за чего главный компонент выходит из строя
Правильно подобранная температура — самый важный фактор при любом ремонте.
Иногда применяют обе стороны печатной платы для работы. Из-за этого плотность монтажа становится в два раза больше. Ещё одно преимущество современных SMT технологий. Материала для производства таких компонентов тоже уходит в несколько раз меньше. Себестоимость благодаря такой конструкции уменьшают.
Допустимые схемы
Маркировка SMD-компонентов
Мне иногда кажется, что маркировка современных электронных компонентов превратилась в целую науку, подобную истории или археологии, так как, чтобы разобраться какой компонент установлен на плату иногда приходитсяпровести целый анализ окружающих его элементов. В этом плане советские выводные компоненты, на которых текстом писался номинал и модель были просто мечтой для любителя, так как не надо было ворошить груды справочников, чтобы разобраться, что это за детали.
Причина кроется в автоматизации процесса сборки. SMD компоненты устанавливаются роботами, в которых установлены сециальные бабины (подобные некогда бабинам с магнитными лентами), в которых расположены чип-компоненты. Роботу все равно, что там в бабине и есть ли у деталей маркировка. Маркировка нужна человеку.
Маркировка импортных smd
Маркировка импортных SMD транзисторов происходит в основном по нескольким принятым системам. Одна из них – это система маркировки полупроводниковых приборов JEDEC.Согласно ей первый элемент – это число п-н переходов, второй элемент – тип номинал, третий – серийный номер, при наличие четвертого – модификации.
Вторая распространенная система маркировка – европейская. Согласно ей обозначение SMD транзисторов происходит по следующей схеме: первый элемент – тип исходного материала, второй – подкласс прибора, третий элемент – определение применение данного элемента, четвертый и пятый – основную спецификацию элемента.
Третьей популярной системой маркировки является японская. Эта система скомбинировала в себе две предыдущие. Согласно ей первый элемент – класс прибора, второй – буква S, ставится на всех полупроводниках, третий – тип прибора по исполнению, четвертый – регистрационный номер, пятый – индекс модификации, шестой – (необязательный) отношение к специальным стандартам.
Что бы к Вам ни попало в руки, для полной идентификации данного элемента следует применять маркировочные таблицы и по ним определить все характеристики данного элемента. По оценкам специалистов соотношение между производством ЭРЭ в обычном и SMD-исполнении должно приблизиться к 30:70. Многие радиолюбители уже начинают с успехом осваивать применение SMD в своих конструкциях.
Маркировка smd компонентов — резисторы
Прямоугольные чип-резисторы и керамические конденсаторы | |||||
Типоразмер | L, мм (дюйм) | W, мм (дюйм) | H, мм (дюйм) | A, мм | Вт |
0201 | 0.6 (0.02) | 0.3 (0.01) | 0.23 (0.01) | 0.13 | 1/20 |
0402 | 1.0 (0.04) | 0.5 (0.01) | 0.35 (0.014) | 0.25 | 1/16 |
0603 | 1.6 (0.06) | 0.8 (0.03) | 0.45 (0.018) | 0.3 | 1/10 |
0805 | 2.0 (0.08) | 1.2 (0.05) | 0.4 (0.018) | 0.4 | 1/8 |
1206 | 3.2 (0.12) | 1.6 (0.06) | 0.5 (0.022) | 0.5 | 1/4 |
1210 | 5.0 (0.12) | 2.5 (0.10) | 0.55 (0.022) | 0.5 | 1/2 |
1218 | 5.0 (0.12) | 2.5 (0.18) | 0.55 (0.022) | 0.5 | 1 |
2021 | 5.0 (0.20) | 2.5 (0.10) | 0.55 (0.024) | 0.5 | 3/4 |
2512 | 6.35 (0.25) | 3.2 (0.12) | 0.55 (0.024) | 0.5 | 1 |
Цилиндрические чип-резисторы и диоды | |||||
Типоразмер | Ø, мм (дюйм) | L, мм (дюйм) | Вт | ||
0102 | 1.1 (0.01) | 2.2 (0.02) | 1/4 | ||
0204 | 1.4 (0.02) | 3.6 (0.04) | 1/2 | ||
0207 | 2.2 (0.02) | 5.8 (0.07) | 1 |
Зарубежная маркировка SMD
В таблице ниже обобщена информация о маркировочных кодах полупроводниковых приборов ведущих зарубежных фирм. Для компактности в настоящий справочный материал не включены приборы-двойники, имеющие одинаковую маркировку и одинаковое название, но производимые разными изготовителями. Например, транзистор BFR93A выпускается не только фирмой Siemens, но и Philips Semiconductors, и Temic Telefunken.
Таблица маркировочных кодах полупроводниковых приборов ведущих зарубежных фирм.
Среди 18 представленных типов корпусов наиболее часто встречается SOT-23 – Small Outline Transistor. Он имеет почтенный возраст и пережил несколько попыток стандартизации.
Выше были приведены нормы конструктивных допусков, которыми руководствуются разные фирмы. Несмотря на рекомендации МЭК, JEDEC, EIAJ, двух абсолютно одинаковых типоразмеров в табл.1 найти невозможно.
Приводимые сведения будут подспорьем специалистам, ремонтирующим импортную радиоаппаратуру. Зная маркировочный код и размеры ЭРЭ, можно определить тип элемента и фирму-изготовитель, а затем по каталогам найти электрические параметры и подобрать возможную замену.
Кроме того, многие фирмы используют свои собственные названия корпуса. Следует отметить, что отечественные типы корпусов, такие как КТ-46 – это аналог SOT-23, KT-47 – это аналог SOT-89, КТ-48 – это аналог SOT-143, были гостированы еще в 1988 году.
Выпущенные за это время несколько десятков разновидностей отечественных SMD-элементов маркируют, как правило, только на упаковочной таре, транзисторы КТ3130А9 – еще и разноцветными метками на корпусе. Самые “свежие” типы корпусов – это SOT-23/5 (или, по-другому, SOT-23-5) и SOT-89/5 (SOT-89-5), где цифра “5” указывает на количество выводов.
Назвать такие обозначения удачными – трудно, поскольку их легко можно перепутать с трехвыводными SOT-23 и SOT-89. В продолжение темы заметим, что появились сообщения о сверхминиатюрном 5-выводном корпусе SOT-323-5 (JEDEC specification), в котором фирма Texas Instruments планирует выпускать логические элементы PicoGate Logic серии ACH1G и ACHT1G.
Из всех корпусов “случайным” можно назвать относительно крупногабаритный SOT-223. Обычно на нем помещаются если не все, то большинство цифр и букв названия ЭРЭ, по которым однозначно определяется его тип. Несмотря на миниатюрность SMD-элементов, их параметры, включая рассеиваемую мощность, мало чем отличаются от корпусных аналогов.
Для сведения, в справочных данных на транзисторы в корпусе SOT-23 указывается максимально допустимая мощность 0,25-0,4 Вт, в корпусе SOT-89 – 0,5-0,8 Вт, в корпусе SOT-223 – 1-2 Вт.
Маркировочный код элементов может быть цифровым, буквенным или буквенно-цифровым. Количество символов кода от 1 до 4, при этом полное наименование ЭРЭ содержит 5-14 знаков.
Самые длинные названия применяют:
- американская фирма Motorola,
- японская Seiko Instruments
- тайваньская Pan Jit.
Код | Тип | ЭРЭ | Фирма | Рис. | Код | Тип | ЭРЭ | Фирма | Рис. |
7E | MUN5215DW1T1 | K2 | MO | 2Q | |||||
11 | MUN5311DW1T1 | L3 | MO | 2Q | 7F | MUN5216DW1T1 | K2 | MO | 2Q |
12 | MUN5312DW1T1 | L3 | MO | 2Q | 7G | MUN5230DW1T1 | K2 | MO | 2Q |
12 | INA-12063 | U2 | HP | 2Q | 7H | MUN5231DW1T1 | K2 | MO | 2Q |
13 | MUN5313DW1T1 | L3 | MO | 2Q | 7J | MUN5232DW1T1 | K2 | MO | 2Q |
14 | MUN5314DW1T1 | L3 | MO | 2Q | 7K | MUN5233DW1T1 | K2 | MO | 2Q |
15 | MUN5315DW1T1 | L3 | MO | 2Q | 7L | MUN5234DW1T1 | K2 | MO | 2Q |
16 | MUN5316DW1T1 | L3 | MO | 2Q | 7M | MUN5235DW1T1 | K2 | MO | 2Q |
1С | BC847S | N5 | SI | 2Q | 81 | MGA-81563 | U1 | HP | 2Q |
1P | BC847PN | P6 | SI | 2Q | 82 | INA-82563 | U1 | HP | 2Q |
31 | MUN5331DW1T1 | L3 | MO | 2Q | 86 | INA-86563 | U1 | HP | 2Q |
32 | MUN5332DW1T1 | L3 | MO | 2Q | 87 | INA-87563 | U1 | HP | 2Q |
33 | MUN5333DW1T1 | L3 | MO | 2Q | 91 | IAM-91563 | U1 | HP | 2Q |
34 | MUN5334DW1T1 | L3 | MO | 2Q | A2 | MBT3906DW1T1 | P5 | MO | 2Q |
35 | MUN5335DW1T1 | L3 | MO | 2Q | A3 | MBT3906DW9T1 | P5 | MO | 2Q |
36 | ATF-36163 | A1 | HP | 2Q | A4 | BAV70S | E4 | SI | 2Q |
3C | BC857S | P5 | SI | 2Q | E6 | MDC5001T1 | U3 | MO | 2Q |
3X | MUN5330DW1T1 | L3 | MO | 2Q | H5 | MBD770DWT1 | F2 | MO | 2Q |
46 | MBT3946DW1T1 | P6 | MO | 2Q | II | AT-32063 | N2 | HP | 2Q |
51 | INA-51063 | U2 | HP | 2Q | M1 | CMY200 | U1 | SI | 2R |
52 | INA-52063 | U2 | HP | 2Q | M4 | MBD110DWT1 | F2 | MO | Q |
54 | INA-54063 | U2 | HP | 2Q | M6 | MBF4416DW1T1 | A3 | MO | 2Q |
6A | MUN5111DW1T1 | L2 | MO | 2Q | MA | MBT3904DW1T1 | N5 | MO | 2Q |
6B | MUN5112DW1T1 | L2 | MO | 2Q | MB | MBT3904DW9T1 | N5 | MO | 2Q |
6C | MUN5113DW1T1 | L2 | MO | 2Q | MC | BFS17S | N5 | SI | 2Q |
6D | MBF5457DW1T1 | A3 | MO | 2Q | RE | BFS480 | N5 | SI | 2Q |
6D | MUN5114DW1T1 | L2 | MO | 2Q | RF | BFS481 | N5 | SI | 2Q |
6E | MUN5115DW1T1 | L2 | MO | 2Q | RG | BFS482 | N5 | SI | 2Q |
6F | MUN5116DW1T1 | L2 | MO | 2Q | RH | BFS483 | N5 | SI | 2Q |
6G | MUN5130DW1T1 | L2 | MO | 2Q | T4 | MBD330DWT1 | F2 | MO | 2Q |
6H | MUN5131DW1T1 | L2 | MO | 2Q | W1 | BCR10PN | L3 | SI | 2Q |
6J | MUN5132DW1T1 | L2 | MO | 2Q | WC | BCR133S | K2 | SI | 2Q |
6K | MUN5133DW1T1 | L2 | MO | 2Q | WF | BCR08PN | L3 | SI | 2Q |
6L | MUN5134DW1T1 | L2 | MO | 2Q | WK | BCR119S | K2 | SI | 2Q |
6M | MUN5135DW1T1 | L2 | MO | 2Q | WM | BCR183S | K2 | SI | 2Q |
7A | MUN5211DW1T1 | K2 | MO | 2Q | WP | BCR22PN | L3 | SI | 2Q |
7B | MUN5212DW1T1 | K2 | MO | 2Q | Y2 | CLY2 | A1 | SI | 2R |
7C | MUN5213DW1T1 | K2 | MO | 2Q | 6s | CGY60 | U1 | SI | 2R |
7D | MUN5214DW1T1 | K2 | MO | 2Q | Y7s | CGY62 | U1 | SI | 2R |
Будет интересно Что такое фотодиод
Группа смд корпусов по их названию
Название | Расшифровка | кол-во выводов |
SOT | small outline transistor | 3 |
SOD | small outline diode | 2 |
SOIC | small outline integrated circuit | >4, в две линии по бокам |
TSOP | thin outline package (тонкий SOIC) | >4, в две линии по бокам |
SSOP | усаженый SOIC | >4, в две линии по бокам |
TSSOP | тонкий усаженный SOIC | >4, в две линии по бокам |
QSOP | SOIC четвертного размера | >4, в две линии по бокам |
VSOP | QSOP ещё меньшего размера | >4, в две линии по бокам |
PLCC | ИС в пластиковом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
CLCC | ИС в керамическом корпусе с выводами, загнутыми под корпус с виде буквы J | >4, в четыре линии по бокам |
QFP | квадратный плоский корпус | >4, в четыре линии по бокам |
LQFP | низкопрофильный QFP | >4, в четыре линии по бокам |
PQFP | пластиковый QFP | >4, в четыре линии по бокам |
CQFP | керамический QFP | >4, в четыре линии по бокам |
TQFP | тоньше QFP | >4, в четыре линии по бокам |
PQFN | силовой QFP без выводов с площадкой под радиатор | >4, в четыре линии по бокам |
BGA | Ball grid array. Массив шариков вместо выводов | массив выводов |
LFBGA | низкопрофильный FBGA | массив выводов |
CGA | корпус с входными и выходными выводами из тугоплавкого припоя | массив выводов |
CCGA | СGA в керамическом корпусе | массив выводов |
μBGA | микро BGA | массив выводов |
FCBGA | Flip-chip ball grid array. Массив шариков на подложке, к которой припаян кристалл с теплоотводом | массив выводов |
LLP | безвыводной корпус |
Все это большое разнообразие электронных элементов обычному радиолюбителю может и не потребоваться, но знать о них нужно, мало ли что. Для паяльщика, который творит у себя дома, вполне может хватить перечня из основных деталей, которыми обычно пользуются все радиолюбители.
Виды записи
Производители транзисторов применяют два основных типа шифрования – это цветовая и кодовая маркировки. Однако ни один, ни другой не имеют единых стандартов. Каждый завод, производящий полупроводниковые приборы (транзисторы, диоды, стабилитроны и т. д.), принимает свои кодовые и цветовые обозначения. Можно встретить транзисторы одной группы и типа, изготовленные разными заводами, и маркированы они будут по-разному. Или наоборот: элементы будут различными, а обозначения на них – идентичными. В таких случаях различать их можно только по дополнительным признакам. Например, по длине выводов эмиттера и коллектора либо по окраске противоположной (или торцевой) поверхности. Маркировка полевых транзисторов ничем не отличается от меток на других приборах. Такая же ситуация и с полупроводниковыми элементами зарубежного производства: каждым заводом-изготовителем применяются свои типы обозначений.
2-1 2-2 2-3 2-4
Расположение и назначение выводов A B C D E FАналоги корпусовТипоразмеры SMD корпусов
код | Тип | Примечание | Рисунок/корпус |
25B | 1PMT5925B | стабилитрон 10В 37 mA | E1 /DO216AA |
26 | MMBD2103 | 2 MMBD1201 | A4 / SOT23 |
26 | DTC144EKA | n-p-n тр.R1,R2=47k | A14 / SC59 |
26 | DTC144EUA | n-p-n тр.R1,R2=47k | A14 / SC70 |
27 | MMBD2104 | 2 MMBD1201 | A2 / SOT23 |
27 | SML4750 | стабилитрон 27В 9.5 mA | E2/ |
27 | U1ZB27 | стабилитрон 27В 10 mA | E2/ |
27B | 1PMT5927B | стабилитрон 12В 31 mA | E1 /DO216AA |
270 | U1ZB270 | стабилитрон 270В 0.5 mA | E2/ |
270X | U1ZB270-X | стабилитрон 250 — 270В 0.5 mA | E2/ |
270Y | U1ZB270-Y | стабилитрон 260 — 280В 0.5 mA | E2/ |
270Z | U1ZB270-Z | стабилитрон 270 — 290В 0.5 mA | E2/ |
27A | P6SMB27AT3 | супрессор 27В 1 mA | E2/ |
27C | P6SMB27CAT3 | супрессор 27В 1 mA | E2/ |
27V | PZM27NB | стабилитрон 27В 300мВт | A3 / SOT346 |
27Y | BZV49-C27 | стабилитрон 27В 1Вт | C8 / SOT89 |
28 | BFP280T | n-p-n СВЧ транзистор | C1 / |
28 | MMBD2105 | 2 MMBD1201 | A1 / SOT23 |
-28 | PDTA114WU | p-n-p транзистор | A14 / SOT323 |
29 | MMBD1401 | кремниевый диод | A3 / SOT23 |
29 | DTC115EE | n-p-n тр.R1,R2=100k | A14 / EMT3 |
29 | DTC144EUA | n-p-n тр.R1,R2=100k | A14 / SC70 |
29 | DTC144EKA | n-p-n тр.R1,R2=100k | A14 / SC59 |
29B | 1PMT5929B | стабилитрон 15В 25 mA | E1 /DO216AA |
200 | SSTPAD200 | диод * | A10 / |
201 | PZM20NB1 | стабилитрон 20В 300мВт | A3 / SOT346 |
202 | PZM20NB2 | стабилитрон 20В 300мВт | A3 / SOT346 |
203 | PZM20NB3 | стабилитрон 20В 300мВт | A3 / SOT346 |
221 | PZM22NB1 | стабилитрон 22В 300мВт | A3 / SOT346 |
222 | PZM22NB2 | стабилитрон 22В 300мВт | A3 / SOT346 |
223 | PZM22NB3 | стабилитрон 22В 300мВт | A3 / SOT346 |
241 | PZM24NB | стабилитрон 24В 300мВт | A3 / SOT346 |
242 | PZM24NB | стабилитрон 24В 300мВт | A3 / SOT346 |
271 | PZM2.7NB1 | стабилитрон 2.7В 300мВт | A3 / SOT346 |
272 | PZM2.7NB2 | стабилитрон 2.7В 300мВт | A3 / SOT346 |
код | Тип | Примечание | Рисунок/корпус |
2A | MMBT3906L | аналог 2N3906 | A14 / SOT23 |
2A | MMBT3906W | аналог 2N3906 | A14 / SOT323 |
2A | FMMT3906 | аналог 2N3906 | A14 / SOT23 |
2A | SXT3906 | p-n-p транз. 40V 200mA | A7 / SOT89 |
t2A | PMBT3906 | аналог 2N3906 | A14 / SOT23 |
t2A | PMST3906 | аналог 2N3906 | A14 / SOT323 |
p2A | PMBT3906 | аналог 2N3906 | A14 / SOT23 |
p2A | PXT3906 | аналог 2N3906 | C8 / SOT89 |
2A4 | PZM2.4NB2A | 2 стабилитрона 2.4В | A1 / SOT346 |
2A7 | PZM2.7NB2A | 2 стабилитрона 2.7В | A1 / SOT346 |
2AR | 2SC5026R | n-p-n транз. 80V 1A | A7 / SOT89 |
2AS | 2SC5026S | n-p-n транз. 80V 1A | A7 / SOT89 |
2B | BC849B | аналог BC549B | A14 / SOT23 |
2Bs | BC849B | аналог BC549B | A14 / SOT23 |
2Bs | BC849BW | аналог BC549B | A14 / SOT323 |
2Bp | BC849B | аналог BC549B | A14 / SOT23 |
2Bs | BC849BW | аналог BC549B | A14 / SOT323 |
2B- | BC849BW | аналог BC549B | A14 / SOT323 |
2B | FMMT2907 | аналог 2N2907 | A14 / SOT23 |
2B | MMBT2907 | аналог MPS2907 | A14 / SOT23 |
p2B | PMBT2907 | аналог 2N2907 | A14 / SOT23 |
t2B | PMBT2907 | аналог 2N2907 | A14 / SOT23 |
2BR | BC849BR | аналог BC549B | A15 / SOT23R |
2BZ | FMMT2907 | аналог 2N2907 | A14 / SOT23 |
2C | BC849C | аналог BC549C | A14 / SOT23 |
2Cs | BC849C | аналог BC549C | A14 / SOT23 |
2Cs | BC849CW | аналог BC549C | A14 / SOT323 |
2Cp | BC849C | аналог BC549C | A14 / SOT23 |
2Ct | BC849C | аналог BC549C | A14 / SOT23 |
2Ct | BC849CW | аналог BC549C | A14 / SOT323 |
2C- | BC849CW | аналог BC549C | A14 / SOT323 |
2C | MMBTA70 | аналог MPSA70 | A14 / SOT23 |
2CR | BC849CR | аналог BC549C | A15 / SOT23R |
2CZ | FMMTA70 | аналог MPSA70 | A14 / SOT23 |
2D | MMBTA92 | p-n-p транз.аналог MPSA92 | A14 / SOT23 |
Маркировка транзисторов в соответствии с советской системой классификации.
У транзисторов,разработанных до 1964
года условные обозначения типа состоят из двух или трех элементов.
Первый элемент обозначения — буква П, означающая, что данная деталь и является, собственно,
транзистором.
Биполярные транзисторы в герметичном корпусе обозначались двумя буквами — МП, буква М означала
модернизацию.
Второй элемент обозначения — одно, двух или
трехзначное число, которое определяет порядковый
номер разработки и подкласс транзистора, по роду полупроводникового материала,
значениям допустимой рассеиваемой мощности и
граничной(или предельной) частоты.
От 1 до 99 — германиевые маломощные низкочастотные транзисторы.
От 101 до 199 — кремниевые маломощные низкочастотные транзисторы.
От 201 до 299 — германиевые мощные низкочастотные транзисторы.
От 301 до 399 — кремниевые мощные низкочастотные транзисторы.
От 401 до 499 — германиевые высокочастотные и СВЧ маломощные транзисторы.
От 501 до 599 — кремниевые высокочастотные и СВЧ маломощные транзисторы.
От 601 до 699 — германиевые высокочастотные и
СВЧ мощные транзисторы.
От 701 до 799 — кремниевые высокочастотные и СВЧ
мощные транзисторы.
Третьим элементом может быть буква, определяющая классификацию по параметрам транзисторам, изготовленной по одной технологии.
Например: МП42 — транзистор германиевый, низкочастотный, маломощный, номер разработки — 42
П401 — транзистор германиевый, маломощный,высокочастотный, номер разработки — 1.
Начиная с 1964 года была введена другая система обозначений, действовшая до 1978 года.
Ее появление было связано с появлением большого числа новых серий разнообразных
полупроводниковых приборов, в частности — полевых транзисторов.
Для обозначения исходного материала используются следующие символы(первый элемент обозначения):
Буква Г или цифра 1 — германий.
Буква К или цифра 2 — кремний.
Буква А или цифра 3 — арсенид галлия.
Второй элемент — буква Т, означает биполярный
транзистор, буква П — транзистор полевый.
В качестве третьего элемента обозначения используются девять цифр, характеризующих подклассы транзисторов по значениям рассеиваемой мощности и граничной частоты.
1 -транзисторы маломощные(до 0,3 ватт) низкочастотные(до 3 МГц).
2 — транзисторы маломощные(до 0,3 ватт) средней частоты(до 30 МГц).
3 — транзисторы маломощные(до 0,3 ватт) высокочастотные.
4- транзисторы средней мощности(до 1,5 ватт), низкочастотные(до 3 МГц).
5 -транзисторы средней мощности(до 1,5 ватт),средней частоты(до 30 МГц).
6-транзисторы средней мощности(до 1,5 ватт),высокочастотные
и СВЧ.
7 — транзисторы мощные(свыше 1,5 ватт), низкочастотные(до 3 МГц).
8- транзисторы мощные(свыше 1,5 ватт), средней частоты(до 30 МГц).
9 — транзисторы мощные(свыше 1,5 ватт), высокочастотные и СВЧ.
Четвертый и пятый элементы обозначения —
определяют порядковый номер разработки.
Пример: КТ315А кремниевый биполярный транзистор,
маломощный, высокочастотный,подкласс А.
С 1978 года были введены изменения,
первые два символа обозначающие материал
и подкласс транзистора остались преждними.
Изменения коснулись обозначения функциональных
возможностей — третьего элемента.
Для биполярных транзисторов:
1 — транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой до 30 МГц.
2- транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой до 300 МГц.
4 — транзистор с рассеиваемой мощностью до
1 ватта и граничной частотой более 300 МГц.
7 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой до 30 МГц.
8 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой до 300 МГц.
9 — транзистор с рассеиваемой мощностью более
1 ватта и граничной частотой свыше 300 МГц.
Те же обозначения действительны и для полевых транзисторов.
Для обозначения порядкового номера разработки
используют трехзначные числа от 101 до 999(следующие три знака).
Для дополнительной классификации используют
буквы русского алфавита, от А до Я.
Цифра, написанная через дефис после седьмого элемента — обозначения модификаций бескорпусных транзисторов:
1 — с гибкими выводами без кристаллодержателя.
2 -с гибкими выводами на кристаллодержателе.
3 — с жесткими выводами без кристаллодержателя.
4 — с жесткими выводами на кристаллодержателе.
5 — с контактными площадками без кристаллодержателя и без выводов.
6 — с контактными площадками на кристаллодержателе, но без выводов.
Пример:КТ2115А-2 кремниевый биполярный транзистор для устройств широкого применения,
маломощный, высокочастотный, бескорпусный с гибкими выводами на кристаллодержателе.
В общем, — без хорошего каталога не разберешься.
DIP светодиоды
Сокращение DIP расшифровывается как Direct In-line Package. Именно их в первую очередь начали массово выпускать в недалеком прошлом.
Трудно представить, но первые неказистые экземпляры для рядовых пользователей стоили от 200$ за штуку.
На сегодняшний день они уже не так распространены, но все же применяются:
в устройствах индикации
в панелях электронных приборов
световых табло
или елочных украшениях
По форме корпуса они могут быть круглыми, овальными или прямоугольными. Самые популярные типоразмеры с выпуклыми линзами – 3,5,8,10мм.
Напряжение питания 2,5-5В, при токе до 25мА.
Бывают разноцветными и многоцветными (RGB). Это когда в одном корпусе спрятано 3 перехода, а внизу есть 4 вывода.
В электрических схемах все светодиоды обозначаются как обычный диод с двумя стрелочками.
Несмотря на малые размеры и свою “древность”, отдельные модели из-за специфической формы корпуса, могут выдать в 1,5-2 раза больше яркости, чем некоторые SMD.
К тому же потребление энергии у DIP меньше чем SMD, да и стоят они дешевле. Однако SMD технология не стоит на месте и с каждым годом их параметры стремительно сближаются.
Группа – 4
Микросхемы этой группы используются в тех случаях, когда необходимо преобразовать напряжение 2,5 – 5,0 вольт в более высокое напряжение ряда 3,3 – 5,0 – 12,0 – 15,0 вольт. Такие преобразователи часто применяются в планшетах, модемах, мониторах и телевизорах, зарядных устройствах, электронных книгах с e-ink дисплеями, устройствах с батарейным питанием.
Специализированные повышающие преобразователи, применяемые для питания светодиодов подсветки экрана, рассматриваются здесь.
Назначение выводов:
- IN — входное напряжение питания 2,5…5в. (Для некоторых типов до 28в.)
- GND — земля, общий провод.
- EN – напряжение включения. При подаче напряжения логической единицы на этот вывод микросхема включается, при соединении с землей — отключается.
- SW — выход для подключения дросселя.
- FB — напряжение обратной связи (0,6…1,3в).
Напряжение на выходе преобразователя зависит от соотношения номиналов резисторов R1, R2 и рассчитывается по формуле:
R1 = (Vout / Vfb -1) • R2
здесь Vfb – значение напряжения на входе FB, в.
Значение Vfb указано в таблице для каждой микросхемы. При подборе аналога необходимо брать микросхему с тем же значением Vfb, иначе выходное напряжение сильно изменится. Это может повредить устройство.
Конденсатор C3 служит для повышения стабильности генерации. Обычно он имеет емкость 22 пф, но некоторые производители им пренебрегают. Конденсаторы С1, С4 рекомендуется устанавливать емкостью от 4 до 10 мкф.
Маркировка DC/DC преобразователей в корпусе SOT23-5
Условные обозначения: y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии
Маркировка DC/DC преобразователей в корпусе SOT23-6
Условные обозначения: y – буква, код года изготовления
m – буква, код месяца изготовления
w – буква, код недели изготовления
a – буква, код места изготовления
p – буква, код партии