Arduino step motor 28byj 48 подключение

Как проверить микросхему?

Обычно на руках у радиолюбителя всяческие микросхемы появляются из других устройств, которые были разобраны очень давно, и уже нет никакой информации о состоянии его компонентов, поэтому вопрос, как проверить uln 2003a вполне актуален. А сделать это можно достаточно просто:

Прозвонить мультиметром. С его помощью можно выяснить пробит ли диод или сам транзистор. Если что-то пробито (звонится на КЗ или около), то в любом случае эта ячейка неисправна. Базу прозвонить таким способом не удастся, потому что на входе имеется резистор сопротивлением 2,7 кОм. Лучше попробовать включить открыть транзистор, подав на вход напряжение величиной не более 3,85 В.

Обзор шагового двигателя 28BYJ-48

Шаговые двигатели применяют в механических системах точного позиционирования – ЧПУ станках, 3d-принтерах, принтерах, роботах-манипуляторах. Шаговые двигатели преобразуют электрические импульсы в перемещение вала на определенный угол. Минимально возможный угол перемещения шагового двигателя, называется шагом.

В любительской робототехнике очень часто используют бюджетный шаговый двигатель 28BYJ-48, в комплекте с которым продается драйвер двигателя на микросхеме ULN2003, необходимый для подключения шагового двигателя к плате Arduino.

Рисунок 1. Шаговый двигатель 28BYJ-48 с драйвером на микросхеме ULN2003.

Характеристики шагового двигателя 28BYJ-48:

Напряжение питания – 5В или 12В;

Коэффициент редукции – 1/63.68395;

Количество шагов ротора – 64;

Номинальная скорость вращения – 15 оборот/мин;

Крутящий момент – 450 г*см;

Размеры (диаметр,высота) –25×18 мм;

Принципиальная схема шагового двигателя 28BYJ-48 приведена на рис. 2.

Рисунок 2. Принципиальная схема шагового двигателя 28BYJ-48.

Шаговый двигатель от CD-ROM — запуск на Arduino без драйвера

Добрый вечер ребята. У меня такой вопрос. Как правильно подключить и запустить на ардуино шаговый двигатель от дисковода без драйвера и как урправлять реверсом? Заранее всем откликнувшимся большое спасибо за помощь.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Там нет шагового двигателя. Там три других двигателя: один обычный коллекторный моторчик, который открывает/закрывает каретку. И два трёхфазных бесколлекторных двигателя: один крутит диск (побольше), другой двигает лазерную головку (поменьше).

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Хмм . А я видел привод каретки и от коллекторного и от шагового движков.

шаговый был обычный биполярный. Подключение много раз обсуждалось

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Меня значит интересует тот который двигает лазерную головку ( у него 4 контакта). Как его можно подключить без драйвера к ардуино и сделать реверс программно??

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Похоже я ошибся и двигатель, который двигает головку всё-таки биполярный шаговый.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Спасибо за ролики я первый смотрел уже, там через драйвер. Можно ли обойтись без драйвера?

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

А как можно реализовать через ардуино реверс обычного постоянного мотора (например от лотка дисковода)? Мотор собираюсь запускать через транзистор подавая на базу сигнал с ардуино. Спасибо за вашу помощь заранее.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Через транзистор реверсить не получится надо или мост или полумост.

вообщетто непонятно , как Вы нашли этот форум, если не умеете пользоваться поиском?

а если умеете то почему не ищете сами?

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Поиском я умею пользоваться но там советуют в других форумах через драйвер. Как вот можно обычный постоянный мотор реверсить без драйвера . Подключать хочу его к ардуино и задавать реверс цифровым выходом (пинами)

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Спасибо вам. через Н-мост попробую Но я так понимаю если случайно запусить оба транзистора то будет короткое замыкание цепи (например нажал на пульте две кнопки Вперед и Назад одновременно).

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Да, будет коротыш. Именно роэтому лучше применить мелкосхему, там есть защита.

откуда такой антагонизм к драйверам? Драйвер на мелкосхеме — тот же Нмост с защитами и в одном корпусе. Очень удобно.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Да не антагонизм к драйверам. Просто нет в наличии пока. А так понимаю что очень удобно

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Хмм. L293 достаточно распрострненная и недорогая. На ебээ вообще копейки стоит.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Заказать собираюсь либо на алике или а ебее

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Спасибо за совет вам. Вопрос такой L293 может управлять 12В моторами? Какое количество моторов можно задействовать максимально. Я так понимаю он служит вроде ключа для открывания (пропукскания) питания на моторы, а также реверсы делать.

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

В даташите всё написано:

Wide Supply-Voltage Range: 4.5 V to 36 V Output Current 1 A Per Channel (600 mA for L293D) Peak Output Current 2 A Per Channel (1.2 A for L293D)

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

БЛАГОДАРЮ ВСЕХ ЗА ОКАЗАННУЮ ВАМИ МНЕ ПОМОЩЬ))))))))))))))))))))))))))))))))))

Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Там нет шагового двигателя. Там три других двигателя: один обычный коллекторный моторчик, который открывает/закрывает каретку. И два трёхфазных бесколлекторных двигателя: один крутит диск (побольше), другой двигает лазерную головку (поменьше).

Не будьте столь категоричны: недавно разбирал CD-Drive, так там головку двигает мотор, к которому идет ровно 2 провода — красный и черный. Вы уверены, что это трехфазный бесколлекторный?

Источник

Эксперимент №1. L293D + ATtiny44

Как мы знаем, для управления биполярным шаговым двигателем необходимо не просто прикладывать напряжения к двум обмоткам в нужной последовательности, но и изменять направление тока в этих обмотках, причём делать это независимо друг от друга. Для этого на каждую обмотку нужен собственный Н-мост. Чтобы не городить его из транзисторов, был взят готовый в лице микросхемы L293D. Ещё одно её преимущество — у микросхемы имеются специальные выводы Enable1 и Enable2, который включают и выключают каждый мост. Их можно использовать чтобы подавать ШИМ сигнал, тем самым, возможно контролировать напряжения питания каждого моста. Зачем это может понадобиться, мы увидим дальше. Кроме того, L293D может коммутировать напряжения до 36В и выдавать до 1,2А на каждый канал

, чего вполне должно хватить для питания обмоток нашего моторчика.

Итак, схема:

Управляющие входы L293D подключены к выходам OC0A и OC0B, что позволит в будущем подавать на них ШИМ сигнал.

Прошивать контроллер будем через внутрисхемный программатор (на схеме не указан). Вот как выглядит собранная схема на макетной плате:

И вот так расположен наш подопытный:

Теперь можно приступать к экспериментам.

Рассчитаем ток, который будет течь через обмотки двигателя при подключении их к напряжению 5В:

I=U/R = 5В/26Ом = 190мА

Совсем небольшой. Интересно как долго он сможет держать такой ток и не перегреться.

Включим в цепь одной из обмоток амперметр и вольтметр, и проведём замеры соответствующих величин при подачи питания на эту обмотку через драйвер.

При падении напряжения на обмотке 2.56В амперметр показывает ток 150мА

, причём хорошо заметно, как начинает падать величина силы тока в процессе нагревания обмоток. Надо отметить, что не так уж и сильно он греется.

Убедившись, что напряжение 5В для моторчика опасности не представляет, попробуем покрутить им в разные стороны. И вот теперь пару слов мы скажем про режимы работы шагового двигателя.

Об этом довольно хорошо сказано здесь.

Не будем повторяться, но вспомним, что шаговый двигатель может работать в трёх режимах:

  • Полношаговый однофазный это когда одновременно напряжение подаётся только на одну фазу двигателя, ротор делает шаг, затем текущая фаза выключается и включается следующая.
  • Полношаговый двухфазный это когда напряжение подаётся одновременно на две фазы мотора, при этом, ротор притягивается одновременно к двум обмоткам, что создаёт больший крутящий момент.
  • Микрошаговый режим в этом случае реализуется тот же принцип, что и на полношаговом двухфазном, то есть работают одновременно две обмотки, но напряжение (и как следствие ток) распределяется между ними неравномерно. Фактически, это означает, что мы можем поставить моторчик в неограниченное количество положений (на практике, разумеется, такого сделать нельзя). Увеличивается точность позиционирования.

Попробуем реализовать первые два режима на микросхеме L293D а для микрошагового режима оставим специальный драйвер из второго эксперимента. Исходный код программы выглядит следующим образом:Исходный код в среде WinAVR #define F_CPU 8000000UL // указываем частоту в герцах // фьюзы необходимо выставить L: E2; H:DF; Ex:FF; // это будет частота 8МГц от внутреннего генератора с выключенным предделителем тактовый частоты (включен по умолчанию и равен

Полношаговый режим. Одна фаза

Двигатель делает 16 шагов на один оборот. Причём шаги для двух фаз имеют не одинаковую угловую величину. Не знаю с чем это связано. Может конструкция двигателя такая? Посмотрим на максимальную частоту шагов, которую он может обеспечить в таком режиме, не пропуская их.

Минимальная задержка между шагами 2мс, значит 500 шагов/секунду. Неплохо, это 31 об/сек = 1850 об/мин.

Полношаговый режим. Две фазы

Обратите внимание, что в этом случае шаги получаются ровнее, они одинаковы по величине (во всяком случае, более одинаковы, чем в предыдущем случае). Естественно, в этом случае под напряжением находятся одновременно две обмотки и теплоотдача возрастает

Двигатель уже через несколько секунд нагревается достаточно сильно, потому эксперимент я прекратил.

Что с максимальной частотой шагов? 500 шагов/секунду; 31 об/сек = 1875 об/мин.

Надо сказать, что для шагового двигателя он довольно шустрый. Это связано с малым количеством магнитных полюсов на роторе.

Продолжаем…

Настройка тока DRV8825.

Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя, и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.

Для настройки необходимо рассчитать значение напряжения Vref.

Vref = Current Limit / 2

где,

Current Limit — номинальный ток двигателя.

Для примера рассмотрим двигатель NEMA 17 17HS4401 с током 1,7 А.

Vref = 1,7 / 2 = 0,85 В.

Осталось только настроить, берем отвертку и вольтметр, плюсовый щуп вольтметра устанавливаем на потенциометр, а щуп заземления на вывод GND и выставляем нужное значение.

Подключение драйвера шагового двигателя DRV8825 к Arduino UNO.

Подключим двигатель DRV8825 к Arduino UNO по схеме.

Для этого подключаем GND LOGIC к GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигателя к контактам B2, B1, A2 и A1.

Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

Затем необходимо подключить контакт RST к соседнему контакту SLP к 5В на Arduino, чтобы включить драйвер. А контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND MOT, главное не забудьте подключить электролитический конденсатор на 100 мкФ к контактам питания двигателя. В противном случае, при скачке напряжения модуль может выйти из строя.

Скетч вращения шагового двигателя NEMA 17, драйвер DRV8825.

Как уже было упомянуто выше, драйвер DRV8825 заменим драйвером A4988, поэтому и код вращения двигателем можно взять из предыдущей статьи: Драйвер шагового двигателя A4988. Но для увеличения кругозора сегодня будем использовать код вращения двигателя nema 17 без использования библиотеки.

const int dirPin = 2;
const int stepPin = 3;
const int stepsPerRevolution = 200;

void setup()
{
  pinMode(stepPin, OUTPUT);
  pinMode(dirPin, OUTPUT);
}
void loop()
{
  digitalWrite(dirPin, HIGH); // Установка вращения по часовой стрелки
  
  for(int x = 0; x > stepsPerRevolution; x++)
  {
    digitalWrite(stepPin, HIGH);
    delayMicroseconds(2000);
    digitalWrite(stepPin, LOW);
    delayMicroseconds(2000);
  }
  delay(1000);
  
  digitalWrite(dirPin, LOW); // Установка вращения против часовой стрелки

  for(int x = 0; x < stepsPerRevolution; x++)
  {
    digitalWrite(stepPin, HIGH);
    delayMicroseconds(1000);
    digitalWrite(stepPin, LOW);
    delayMicroseconds(1000);
  }
  delay(1000);
}

Описание скетча:

Для работы данного скетча, не требуется никаких библиотек. Программа начинается с определения выводов Arduino, к которым подключены выводы STEP и DIR. Так же указываем stepsPerRevolution количество шагов на оборот.

В функции void setup() указываем управляющие контакты как выход.

В основной функции void loop(), вращаем двигатель по часовой стрелке, затем против, с разной скоростью.

Подробнее о подключении шаговых двигателей к Ardiono смотрите на сайте Ардуино технологии.

Для более простого подключения шагового двигателя к Arduino или другому микроконтроллеру существуют модули. Модули бывают разные, на фото ниже приведен пример двух различных модулей.

Распиновку и как подключать модуль драйвера DRV8825 будем рассматривать в следующей статье.

Использование драйвера DRV8825 с CNC shield v3.

Драйвер DRV8825 можно установить на CNC shield v3. CNC shield используются для управления ЧПУ станками и облегчают сборку электроники.

Данный набор позволяет без пайки собрать электронику для двух осевых, трех осевых, четырех осевых ЧПУ станков, а также для самостоятельной сборки 3D принтеров. При реализации ЧПУ станков данные шилды используются достаточно часто благодаря своей низкой цене и простоте сборки. Более подробно CNC shield v3 будем рассматривать в следующих статьях.

Вывод можно сделать следующий. Драйвер DRV8825 обладает рядом преимуществ перед драйвером A4988. А также, при использовании драйвера шагового двигателя DRV8825, меньше шума от шаговых двигателей. Это актуально при сборке лазерного гравера, 3D принтера. Когда при работе главный источник шума — это механика и гул шаговых двигателей.

Понравился статья Драйвер шагового двигателя DRV8825? Не забудь поделиться с друзьями в соц. сетях.

А также подписаться на наш канал на YouTube, вступить в группу , в группу на .

Спасибо за внимание!

Технологии начинаются с простого!

Фотографии к статье

Файлы для скачивания

Скачивая материал, я соглашаюсь с
Правилами скачивания и использования материалов.

drv8825-datasheet.pdf 743 Kb 359 Скачать

Схема униполярных и биполярных шаговых двигателей

Вначале рассмотрим униполярный шаговый двигатель, ввиду простоты управления. В таком моторе ток в обмотке всегда течет в одном направлении. Это упрощает метод управления, в отличие от биполярного, где управление должно обеспечивать изменение полярности катушек шагового двигателя путем изменения направления тока через обмотку на противоположное.

Двух переключателей достаточно, чтобы построить простейший драйвер шагового двигателя, как показано на рисунке. Здесь используем 6-проводный униполярный двигатель. Также можно сказать, что двигатель в этом случае управляется однополярно, за счет использования средней обмотки катушки и постоянного напряжения питания на нее.

Переключая данные переключатели в последовательности S1, S2, S1, S2, S1, S2… заметим, что двигатель вращается. Рисунок выше иллюстрирует важный принцип управления: обе обмотки не могут питаться от одной пары одновременно. Каждое изменение переключателя поворачивает ротор на один шаг. Чем быстрее начнем переключать переключатели в последовательности S1, S2, S1, S2…, тем быстрее начнет вращаться ротор.

Подключение переключателей к катушкам шагового двигателя

Скорость шагового двигателя зависит не от величины напряжения, а от скорости подключения питания к отдельным обмоткам. Чтобы добиться полного вращения ротора с 200-шаговым двигателем, надо изменить положение каждого переключателя 100 раз, то есть выполнить до 200 последовательностей для двух переключателей. Это уже говорит о том, что шаговые двигатели не могут работать на высокой скорости. Из этого следует, что шаговые двигатели можно назвать «цифровыми двигателями», поскольку для вращения ротора необходимо переключать переключатели в соответствующей последовательности.

В нашем случае последовательность переключений также определяет направление вращения шагового двигателя. Когда меняем последовательность включения переключателей, то меняем и направление вращения, например S2, S1, S2, S1, S2, S1… влево, S1, S2, S1, S2, S1, S2… вправо. В этом примере есть двухпозиционные переключатели, которые всегда обеспечивают питание двух из четырех обмоток шагового двигателя в данный момент. Но использование трехпозиционных переключателей дает гораздо больше возможностей.

Опять же, обе обмотки никогда не питаются от одной пары, что является обязательным принципом управления шаговым двигателем. Благодаря трехпозиционным переключателям можно реализовать, например, полушаговое управление, благодаря разнообразию переключений. Одновременно могут быть под напряжением две, одна или ни одной из обмоток.

Упрощенная схема управления униполярным шаговым двигателем

Чтобы управлять таким мотором, надо обеспечить соответствующую последовательность импульсов. Например, только одна из четырех обмоток шагового двигателя находится под напряжением одновременно (это своего рода волновое управление). На каждый цикл двигателя подается питание на одну из четырех катушек униполярного шагового двигателя. Вращение его будет выглядеть так:

Вращение униполярного шагового двигателя в последовательных тактах цикла управления волной

Управляющая последовательность A +, B +, A-, B- повторяется каждые четыре импульса тактового генератора. Этот тип управления называется однофазным или волновым. Это полный шаг управления, потому что двигатель выполняет один полный ход (шаг) с одним импульсом генератора.

Самый простой способ изменить направление — поменять местами одну пару проводов катушки (поменять местами, например, B + с B — и B — с B +), затем дадим последовательность A +, B -, A -, B + импульсы, он вращает двигатель в противоположном направлении. Так управление направлением реализовано в некоторых контроллерах шаговых двигателей. Самый простой способ изменить последовательность импульсов — использовать, например, реле.

Форма волны (однофазная) импульсная последовательность драйвера

Упрощенная схема однофазного (волнового) регулятора с изменением направления вращения

Несомненное преимущество униполярных шаговых двигателей — простота управления. Но это связано с волновым управлением, с использованием только половины обмотки за раз, одна из них всегда не используется. Используется только 1/4 всех обмоток шагового двигателя, что значительно снижает максимальную производительность.

БИБЛИОТЕКА GYVERSTEPPER

GyverStepper v1.5

GyverStepper – производительная библиотека для управления шаговыми моторами

  • Поддержка 4х фазных (шаг и полушаг) и STEP-DIR драйверов
  • Автоматическое отключение питания при достижении цели
  • Режимы работы: Вращение с заданной скоростью
  • Следование к позиции с ускорением и ограничением скорости
  • Следование к позиции с заданной скоростью (без ускорения)

Быстрый алгоритм управления шагами
Два алгоритма плавного движения:

  • Модифицированный планировщик из библиотеки AccelStepper: максимальная плавность и скорость до 7’000 шагов/секс ускорением (для активации пропиши дефайн SMOOTH_ALGORITHM )

Мой планировщик обеспечивает максимальную производительность: скорость до 30’000 шагов/сек с ускорением (активен по умолчанию). Т.е. на небольшой скорости экономит кучу процессорного времени для других задач.

Поддерживаемые платформы: все Arduino (используются стандартные Wiring-функции)

Версия 1.1: добавлена возможность плавно менять скорость в режиме KEEP_SPEED. Добавлены примеры multiStepper и accelDeccelButton Версия 1.2: добавлена поддержка ESP и других Ардуино-совместимых плат Версия 1.3: исправлена логика setTarget(val, RELATIVE) Версия 1.4: добавлена задержка между STEP HIGH и STEP LOW

Работа шагового двигателя и описание драйвера

Как работает шаговик?

Для практических задач с точным перемещением объекта обязательно требуется ШД. Это мотор, который перемещает свой вал в зависимости от заданных шагов в программе контроллера. Чаще всего их применяют в станках ЧПУ, робототехнике, манипуляторах, 3D-принтерах.

Мы же с вами рассмотрим конкретный двигатель 28BYj-48 с драйвером управления ULN2003 . Он достаточно дешёвый, прост в сборке и легко писать программу.

В 4-шаговом режиме он может совершать 2048 шагов, в 8-шаговом 4096 шагов. Питание 5 В, ток потребления 160 мА. Передаточное число 1:64 , то есть один шаг он совершит на 5,625 градусов. Крутящий момент составляет 34 мН.м. Средняя скорость 15 об/мин, с помощью программного кода можно ускорить до 35 об/мин, но вы должны понимать, что мы при этом теряем мощность и точность.

Размеры двигателя указаны из первоисточника — даташита производителя Kiatronics.

А вот таким образом он выглядит изнутри:

Для небольших технических проектов — 28BYj-48 идеальный вариант. Его главным преимуществом является дешевизна и простота. Прилагаю спецификацию:

Тип мотора Униполярный шаговый двигатель
Число фаз 4
Рабочее напряжение 5-12 вольт
Частота 100 Гц
Частота под нагрузкой > 600 Гц
Крутящий момент > 34.3 мН*м (120 Гц)
Режим шага рекомендуется полушаговый режим (8-шаговая управляющая сигнальная последовательность)
Угол шага

8-шаговая управляющая сигнальная последовательность — 5.625º/шаг

4-шаговая управляющая сигнальная последовательность — 11.25º/шаг

Передаточное отношение редуктора Производителем заявлено 64:1

Вес 30 г

ШД имеет четыре обмотки, которые запитываются последовательно:

Для того, чтобы заставить мотор двигаться по часовой стрелке, нужно попеременно подавать на обмотки напряжение. Движок работает в двух режимах в шаговом и полушаговом, чем они отличаются, мы сейчас разберём.

1.Шаговый режим — это когда две из четырех обмоток запитываются на каждом шаге. Смотрите карту включения обмоток: Для этого способа используется библиотека my Stepper.h.

Провод Фазы для шагового режима
1 2 3 4
4 оранжевый
3 желтый
2 розовый
1 синий

2.Полушаговый режим — это когда запитывается первая обмотка, потом вторая и третья вместе, потом четвёртая и т.д. В Даташите разработчика указано, что предпочтительнее режим полушага для мотора. Подробно изображено на карте подключений:

Провод Фазы для полушагового режима
1 2 3 4 5 6 7 8
4 оранжевый
3 желтый
2 розовый
1 синий

Описание драйвера ULN2003

Плата представляет собой силовой модуль, который содержит в себе семь независимых транзисторов Дарлингтона. Каждая пара представляет собой каскад из двух биполярных транзисторов. ULN2003 является неким усилителем с током нагрузки 500 мА и напряжением 50 В. На изображении отображена сама плата и описание выводов к ней.

Arduino Code – Using AccelStepper library

The Arduino Stepper Library is perfectly adequate for simple, single motor applications. But when you want to control multiple steppers, you’ll need a better library.

So, for our next experiment we will make use of an advanced stepper motor library called AccelStepper library. It significantly improves on the standard Arduino Stepper library in several ways:

  • It supports acceleration and deceleration.
  • It supports half-step driving.
  • It supports multiple simultaneous steppers, with independent concurrent stepping on each stepper.

This library is not included in the Arduino IDE, so you will need to install it first.

Library Installation

To install the library navigate to the Sketch > Include Library > Manage Libraries… Wait for Library Manager to download libraries index and update list of installed libraries.

Filter your search by typing ‘accelstepper’. Click on the first entry, and then select Install.

Arduino Code

Here’s the simple sketch that accelerates the stepper motor in one direction and then decelerates to come to rest. Once the motor makes one revolution, it changes the spinning direction. And it keeps doing that over and over again.

Code Explanation:

We start off by including the newly installed AccelStepper library.

Now as we are going to drive our motor at full steps, we will define a constant for this. If you want to drive the motor at half steps, set the constant to 8.

Next, we create an instance of stepper library called with the pin sequence of 8, 10, 9, 11 (Remember the step sequence for these motors is IN1-IN3-IN2-IN4).

Again, make sure you get this right or the motor will not operate properly.

In the setup function we first set the maximum speed of the motor to a thousand which is about as fast as these motors can go. We then set an acceleration factor for the motor to add acceleration and deceleration to the movements of the stepper motor.

Next we set the regular speed of 200 and the number of steps we’re going to move it to i.e. 2038 (as you recall the 28BYJ-48 with its gearing will move 2038 steps per revolution).

In the loop function, we use an If statement to check how far the motor needs to travel (by reading the property) until it reaches the target position (set by ). Once reaches zero we will move the motor in the opposite direction by changing the position to the negative of its current position.

Now at the bottom of the loop you’ll notice we have called a function. This is the most important function, because the stepper will not run until this function is executed.

Драйвер для управления шаговым двигателем

Драйвер – это устройство, которое связывает контроллер и шаговый двигатель. Для управления биполярным шаговым двигателем чаще всего используется драйверы L298N и ULN2003.

Работа двигателя в биполярном режиме имеет несколько преимуществ:

  • Увеличение крутящего момента на 40% по сравнению с униполярными двигателями;
  • Возможность применения двигателей с любой конфигурацией фазной обмотки.

Но существенным минусов в биполярном режиме является сложность самого драйвера. Драйвер униполярного привода требует всего 4 транзисторных ключа, для обеспечения работы драйвера биполярного привода требуется более сложная схема. С каждой обмоткой отдельно нужно проводить различные действия – подключение к источнику питания, отключение. Для такой коммутации используется схема-мост с четырьмя ключами.

Драйвер шагового двигателя на базе L298N

Этот мостовой драйвер управляет двигателем с током до 2 А и питанием до 46В. Модуль на основе драйвера L298N состоит из микросхемы L298N, системы охлаждения, клеммных колодок, разъемов для подключения сигналов, стабилизатора напряжения и защитных диодов.


Драйвер двигателя L298N

Драйвер шагового двигателя ULN2003


Описание драйвера шаговых двигателей UNL2003 Шаговые двигателями с модулями драйверов на базе ULN2003 – частые гости в мастерских Ардуино благодаря своей дешевизне и доступности. Как правило, за это приходится платить не очень высокой надежностью и точностью.

Другие драйвера

Существует другой вид драйверов – STEP/DIR драйверы. Это аппаратные модули, которые работают по протоколу STEP/DIR для связи с микроконтроллером. STEP/DIR драйверы расширяют возможности:

  • Они позволяют стабилизировать фазные токи;
  • Возможность установки микрошагового режима;
  • Обеспечение защиты ключа от замыкания;
  • Защита от перегрева;
  • Оптоизоляция сигнала управления, высокая защищенность от помех.

В STEP/DIR драйверах используется 3 сигнала:

  • STEP – импульс, который инициирует поворот на шаг/часть шага в зависимости от режима. От частоты следования импульсов будет определяться скорость вращения двигателя.
  • DIR – сигнал, который задает направление вращения. Обычно при подаче высокого сигнала производится вращение по часовой стрелке. Этот тип сигнала формируется перед импульсом STEP.
  • ENABLE – разрешение/запрет работы драйвера. С помощью этого сигнала можно остановить работу двигателя в режиме без тока удержания.

Одним из самых недорогих STEP/DIR драйверов является модуль TB6560-V2. Этот драйвер обеспечивает все необходимые функции и режимы.

Общие принципы работы шаговых двигателей

Внешний вид шагового двигателя 28-BYJ48 (купить на AliExpress) представлен на следующем рисунке:

Первый вопрос, который напрашивается при взгляде на этот рисунок – почему в отличие от обычного двигателя из этого шагового двигателя выходят 5 проводов различных цветов? Чтобы понять это давайте сначала разберемся с принципами работы шагового двигателя.

Начнем с того, что шаговые двигатели не вращаются, а “шагают”, поэтому они и называются шаговыми двигателями. То есть в один момент времени они будут передвигаться только на один шаг. Чтобы добиться этого в устройстве шаговых двигателей присутствует несколько катушек и на эти катушки нужно подавать питание в определенной последовательности чтобы двигатель вращался (шагал). При подаче питания на каждую катушку двигатель делает один шаг, при последовательной подаче питания на катушки двигатель будет совершать непрерывные шаги, то есть вращаться. Давайте более подробно рассмотрим катушки, присутствующие внутри шагового двигателя.


Как можно видеть из рисунка, двигатель имеет однополярную катушку с 5 выводами. Но фактически это 4 катушки, на которые нужно подавать питание в определенной последовательности. На красные провода необходимо подать +5V, на остальные 4 провода необходимо подать землю чтобы запустить в работу соответствующую катушку. Мы будем использовать плату Arduino чтобы подавать питание на эти катушки в определенной последовательности и тем самым заставлять двигатель вращаться. Более подробно ознакомиться с принципами работы шаговых двигателей можно в статье про подключение шагового двигателя к микроконтроллеру AVR.

Так почему же этот двигатель называется 28-BYJ48? Честно говоря, мы не знаем точного ответа на этот вопрос. Некоторые наиболее важные технические характеристики этого шагового двигателя приведены на следующем рисунке.

На первый взгляд от такого количества характеристик может закружиться голова, но давайте попробуем выделить из них самые важные, те, которые нам понадобятся для дальнейшей работы. Во-первых, мы знаем, что это шаговый двигатель 5V, поэтому необходимо подавать на красный провод 5V. Также мы знаем что это четырехфазный шаговый двигатель поскольку в нем четыре катушки. Передаточное число этого двигателя — 1: 64. Это означает, что вал, который вы видите снаружи, сделает одно полное вращение в том случае, когда двигатель внутри сделает 64 оборота. Это происходит благодаря шестерням, которые включены между двигателем и выходным валом. Эти шестерни помогают в увеличении крутящего момента.

Еще одним важным показателем, который нам следует знать, является угол шага: 5.625°/64. Это значит что когда двигатель сделает последовательность в 8 шагов он будет поворачиваться на 5.625° при каждом шаге и за один полный оборот он сделает 64 шага (5.625*64=360).

Расчет шагов на оборот для шагового двигателя

Важно знать, как рассчитать количество шагов за один оборот для вашего шагового двигателя, потому что только тогда вы можете эффективно его запрограммировать. В Arduino для управления двигателем мы будем использовать 4-шаговую последовательность, поэтому угол шага будет составлять 11.25°

Поскольку изначально он равен 5.625°(приведен в даташите), то для 8 шаговой последовательности получим 11.25° (5.625*2=11.25)

В Arduino для управления двигателем мы будем использовать 4-шаговую последовательность, поэтому угол шага будет составлять 11.25°. Поскольку изначально он равен 5.625°(приведен в даташите), то для 8 шаговой последовательности получим 11.25° (5.625*2=11.25).

Справедлива следующая формула:

Количество шагов за оборот = 360 / угол шага.

В нашем случае 360/11.25 = 32 шага за оборот.

Зачем нужен драйвер мотора для управления шаговым двигателем

Большинство шаговых двигателей будут работать только с помощью модуля драйвера мотора. Это связано с тем, что микроконтроллер (в нашем случае плата Arduino) не может обеспечить достаточный ток на своих контактах ввода/вывода для работы двигателя. Поэтому мы будем использовать внешний драйвер мотора для управления нашим шаговым двигателем — модуль ULN2003 (купить на AliExpress). В сети интернет можно найти рейтинги эффективности различных драйверов мотора, но эти рейтинги будут меняться в зависимости от типа используемого шагового двигателя. Основной принцип, которого следует придерживаться при выборе драйвера мотора – он должен обеспечивать достаточный ток для управления шаговым двигателем.