Какая норма напряжения в сети по гост в рф: 220 или 230 вольт?

Постоянный и переменный ток

Но есть еще одна очень важная разница между электричеством из батарейки и из бытовой розетки.

Заряды, создаваемые батарейкой, всегда выходят из одного полюса, и приходят к другому. Проводники соединяют полюса через какую-то нагрузку, заряды текут по ним в одну сторону, выполняя полезную работу. Такой ток называется постоянным.

Однако, это не единственный вариант движения зарядов по проводнику. Частицы, несущие заряды (как правило, это электроны), могут менять направление своего движения. Сперва переместиться в одну сторону, а потом – в другую, а потом обратно, и так далее. Причем, делать это очень часто (для российских линий – 50 раз в секунду). Фактически, при этом заряды не движутся, а лишь колеблются вокруг какого-то среднего положения. Однако, при этом они также могут совершать полезную работу. Такой ток называется переменным.

Его напряжение также измеряется вольтами, но, при этом имеется ввиду среднее значение, которое по действию было бы равно действию постоянного тока такого же напряжения. В моменты наибольшей силы мгновенное напряжение сети 220 достигает 310в!

Переменный ток имеет ряд очень важных особенностей, которые обусловили его широкое применение в жизни человека. Наиболее важными являются две:

  • Возможность легкого преобразования с помощью трансформатора.
  • Простота и дешевизна двигателей переменного тока.

Последняя особенность имеет ключевое значение. Для вращения электродвигателя необходимо создать вращающееся магнитное поле. Если подавать на двигатель постоянный ток – то вращающееся магнитное поле придется создавать конструктивными элементами самого двигателя. Раньше это делалось с помощью специального щеточно-коллекторного узла, который по мере поворота ротора двигателя переключал его обмотки так, чтобы магнитное поле поворачивалось на необходимый угол. Современные двигатели постоянного тока применяют для этого специальные электронные схемы, но суть их работы не меняется – они поворачивают магнитное поле по мере поворота ротора.

Трехфазные цепи. Как подается напряжение в них

В трехфазной цепи напряжение может быть фазным или линейным. Векторная диаграмма выглядит следующим образом:

На графике присутствуют три вектора напряжений (фаз) – Uа, Ub и Uс. Величина угла между ними равна 120°. Это соблюдается между обмотками в простейшем электрооборудовании. Для того, чтобы знак вектора Ub изменился на противоположный, его нужно отразить таким образом, чтобы векторное начало и конец поменялись местами, при этом первоначальный угол наклона был сохранен. После установки векторного начала Ub в конец Uа полученное расстояние и будет рассматриваться, как вектор линейного напряжения (Uл).

Почему именно переменное напряжение?

Не так давно по историческим меркам у человечества возникла дилемма: какой ток лучше? Переменный или постоянный? Этот период времени был известен, как “война токов”. На самом деле были споры между Николой Теслой и Эдисоном – самыми великими учеными-изобретателями того времени. Эдисон был за постоянный ток, а Никола Тесла – за переменный. Это борьба продолжалось более 100 лет, даже после смерти этих великих ученых! Но все-таки в 2007 году окончательную победу одержал переменный ток.

Дело все в том, что постоянный ток при передаче на большие расстояния теряет свою энергию на нагрев проводов. Здесь во всем виноват закон Джоуля-Ленца

Q=I2Rt

где

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Нетрудно догадаться, что чем больше сила тока будет протекать по проводам, и чем длиннее будут провода, тем больше они будут нагреваться, так как сопротивление провода выражается формулой:

сопротивление провода формула

Второй причиной было то, что в генераторе постоянного тока надо было использовать специальную конструкцию, которая бы позволяла снимать электрический ток с движущихся обмоток. Для этого на валу двигателя крепился так называемый коллектор, к которому припаивались обмотки генератора. Коллектор все время находился в движении, так как он закреплен на самом валу генератора. С коллектора с помощью графитовых щеток снималось напряжение. Тот же самый принцип до сих пор используется в генераторах и двигателях постоянного тока.

Принцип работы генератора постоянного тока

Минусом такой конструкции является то, что со временем щетки и коллектор изнашиваются. Поэтому, такой генератор надо часто обслуживать, вовремя заменять щетки и чистить коллектор. Чаще всего такой генератор имеет два провода: плюс и минус. Чем больше коллекторных пластин (ламелей) на таком генераторе, тем чище будет постоянный ток с такого генератора. Если  такой генератор имеет множество ламелей и крутится с одинаковой скоростью, то на осциллографе можно увидеть примерно такую картину постоянного тока

осциллограмма постоянного тока

Таких недостатков лишен генератор переменного напряжения. Принцип его действия показан ниже

Принцип работы генератора переменного тока

В настоящее время в нем используются три обмотки,  разнесенные друг от друга на 120 градусов. Один конец каждой обмотки соединяется с друг другом, образуя так называемый “ноль”. В нашей стране такие генераторы на ТЭС или ГЭС стараются крутить со скоростью 50 оборотов/сек. Ну или 3000 оборотов/минуту. Неплохая такая скорость). В Америке же их крутят под 60 оборотов/сек. А что такое обороты в секунду? Это и есть частота. А частота, как вы помните, выражается в Герцах (Гц). Поэтому, у нас в розетках частота 50 Гц, в Америке 60 Гц.

Такие генераторы называют трехфазными, так как они имеют три фазы: A, B, C. В англо-язычной литературе можно увидеть обозначение R, S, T либо L1, L2, L3. Точка, где соединяется конец всех обмоток обозначается буквой N (ноль).

Генератор переменного тока

То есть по сути с генератора выходит 4 провода: фазы A,B,С и 0, он же нейтраль N, который соединяет один конец каждой из трех обмоток.

Обмотки генератора переменного тока

При вращении ротора-магнита в каждой обмотке создается электрический ток. Если с помощью осциллографа вывести осциллограммы сразу трех обмоток, то можно увидеть что-то типа этого:

Осциллограммы трехфазного напряжения

Встречаются ли однофазные сети в чистом виде

Энергосистема нашей страны рассчитана на использование трехфазной сети. Все генераторы на электростанциях вырабатывают три фазы. Это относится к гидроэлектростанциям, АЭС, тепловым, приливным и т.д.

Такая схема передачи энергии на большие расстояния наиболее экономична. Для передачи аналогичной мощности при однофазной линии, потребуются провода большого сечения. Поэтому однофазные сети для передачи электроэнергии не применяются.

На нижеприведенном рисунке представлена схема передачи электроэнергии от ТЭЦ к потребителю.

Однако, однофазные электросети широко используются как аварийные источники питания. Для этого применяются бензиновые или дизельные электростанции. Устанавливают на объектах, где недопустимо отключение электроэнергии. Например, для запитывания электроэнергией больниц (это отделения реанимации или операционные), телефонных станций, систем оперативного оповещения и т.п. Для мощных потребителей используются трехфазные дизельные генераторы. Материал взят с сайта: ​https://samelectrik.ru/​​​

Группа 0

Что определяет этот класс электробезопасности оборудования? В таких устройствах есть только рабочая изоляция от переменного или постоянного тока. На случае его (тока) утечки заземляющего контакта не предусмотрено.

Тут открытые нетоковедущие проводящие элементы не соединяются ни с заземлением, ни с защитным проводником электропроводки. В случае когда таковую изоляцию пробьет, защиту человеку может обеспечить только окружающая среда — воздух, покрытие полов и проч. На корпусах устройств данного класса нет индикаторов опасного напряжения.

Таковые приборы допустимо использовать только в пространствах, где отсутствуют проводящие заземленные элементы в зоне нахождения людей, где нет условий повышенной опасности, куда запрещен доступ посторонних лиц.

Поэтому подобное оборудование необходимо устанавливать только в сухих пространствах и помещениях. Если опираться на рекомендации Международной электрической комиссии, то от использования электрооборудования класса 0 и вовсе следует отказаться. Почему?

При повреждении изоляции на нетокопроводящих элементах устройств может возникнуть напряжение, опасное для здоровья и жизни человека. Соответственно, такая угроза возрастает при эксплуатации оборудования класса 0 в сырых, влажных помещениях.

Примером может служить любой электроприбор в металлическом корпусе, не подключенным производителем к заземлению, — та же самая электроплита с открытыми нагревательными элементами. Еще один яркий пример — советские обогреватели, снабженные открытыми спиралями.

Как защититься от обрыва нуля

Как с этим бороться? Уберечь себя от повышенного напряжения при обрыве ноля, можно несколькими способами.

Первый способ – это выполнить надежное повторное заземление нулевого проводника. Забегая наперед скажу – способ этот плохой и вредный.

Данный метод можно использовать в частных домах

Не важно однофазный или трехфазный у вас ввод. Самое главное, сделать качественный заземляющий контур. После этого, соединяете отдельным проводником шинку нулевой жилы с этим контуром

В случае обрыва нулевого провода, электроснабжение ваших бытовых приборов останется в равновесии и никакого большого перекоса не случится

После этого, соединяете отдельным проводником шинку нулевой жилы с этим контуром. В случае обрыва нулевого провода, электроснабжение ваших бытовых приборов останется в равновесии и никакого большого перекоса не случится.

Ток будет течь от фазы через сопротивление потребителя и уходить через нулевую шинку и его проводник на землю. И так по всем остальным фазам.

Небольшой перекос здесь конечно же будет присутствовать, но его величина будет зависеть от качества вашего контура заземления. Однако этот способ защиты имеет один жирный минус, который перечеркивает все его преимущества.

Безусловно, контур заземления делать нужно, с этим никто не спорит. Вопрос в том, соединять ли его с нулевым проводником.

Ведь если он будет качественным (10 Ом или даже 4 Ом) только у вас одного по всей улице, а обрыв нулевого провода случится не возле вашего дома, а в самом начале ВЛ, то на этот контур тут же “сядут” все ваши соседи.

Фактически весь суммарный ток пойдет через ваш нулевой проводник. Если вы ноль завели через двухполюсный или четырех полюсный автомат, то он скорее всего выбьет от перегрузки. В противном случае ждите пожара и оплавленной проводки. 

Поэтому правильно собранный щит (вводной автомат подобранный по нагрузке, заземляющий медный проводник сечением не менее 10мм2) – залог вашей безопасности. 

Еще один недостаток такой “контурной защиты” – опасность самому попасть под напряжение. Допустим, несколько лет назад вы сделали отличный контур.

Но по причине наличия солей в почве, он постепенно сгнил, а вы об этом даже и не догадываетесь.

В итоге при очередном обрыве нейтрали, все заземленное электрооборудование у вас дома окажется под напряжением. Никакой земли то уже нет. А потенциал фазы начнет гулять по корпусам приборов.

Пошел открыть холодильник – удар током, зашел в душ – попал под напряжение. 

Поэтому надежнее и безопаснее всего применять другой метод.

Замена электропроводки

Проводником бегущих электронов является проводка, расположенная в стенах и соединяющая базовые единицы сети. Часто именно с утратой свойств проводника или его изоляции в домашней сети возникают перебои с подачей электричества. Такие неполадки могут быть безопасны, но способны и вызвать серьёзные последствия, например, короткое замыкание или возгорание вследствие пересыхания и повреждения изоляции, которая находилась в стенах не один десяток лет.

При осуществлении ремонта в старом доме не лишним будет проверка проводки и её замена в случае плохих показателей

Вот косвенные признаки, на которые стоит обратить внимание:

  • Наличие самодельных врезок в сеть.
  • Нагрев отдельных участков, видимый на тепловизоре.
  • Почернение или потрескивание изоляции.
  • Выбиваются электрощитовые пробки после подключения нескольких приборов (холодильник и микроволновая печь).

Процесс замены состоит из следующих операций:

  1. Замена и установка нового щитового оборудования и автомата.
  2. Монтаж распределительной коробки.
  3. и выключателей вместе с фурнитурой на современные, укрепление новых стаканов.
  4. Штробление или укрепление каналов для последующей прокладки проводов в стенах.

Как определить, какой ток в розетке

Какое напряжение в розетке и сила тока – постоянное или переменное, можно определить несколькими способами:

Амперметром. Это специализированный прибор для измерения силы показателя. Значения можно увидеть на шкале посредством соединения розетки, потребителя и амперметра.

Вам это будет интересно Особенности активно-емкостной нагрузки


Амперметр

  • Мультиметр. Это комбинированное устройство, объединяющее в своей цепи омметр, вольтметр и амперметр.
  • Расчетным способом. Для того, чтобы определить, какой ток в розетке, необходимо знать показатель мощности прибора. В сеть подается ток с напряжением в 220В, поэтому расчет силы прост: значение мощности разделить на напряжение. Так несложно вычислить ток при включении утюга, мощностью 2,0 кВт, получается, 9.09 Ампер. Таким образом, если напряжение в сети 220 В, то какой по показателю ток протекает в сети, зависит от мощности.

Стоит отметить! Погрешность при измерениях зависит от класса точности устройств, перечисленных в пунктах 1 и 2.

Переменный

Почти 98% электроэнергии вырабатываемой домашней электросетью – переменный ток. Этот ток изменяет как направление, так и величину. При передаче электроэнергии внутри сети, напряжение либо увеличивается, либо уменьшается, в связи чем розетки выпускаются для переменного показателя. Существуют электроприборы, питающиеся от источника постоянного показателя, поэтому их следует привести к одному типу с использованием преобразователей.


Закон Ома

Основные преимущества переменного тока:

  • Передача на длинные расстояния.
  • Позволяет использовать стандартное генераторное оборудование.
  • Отсутствует полярность при подключении.

Однако у данного тока также имеется ряд недостатков:

  • Потери в цепи обязывают подбирать розетки с учётом понижающего коэффициента 0,7.
  • Возникает электромагнитная индукция, в связи, с чем электричество не всегда распределяется равномерно.
  • Проверка и измерение значений осуществляются по сложной схеме.
  • Увеличение показателя сопротивления, так как кабель не задействован в полном объеме.


Переменное значение

Постоянный

При упорядоченном движении заряженных частиц в едином направлении, ток называется постоянным, и возникает он в сети с неизменным напряжением при стабильной полярности зарядов. Используется в промышленных автономных установках, что исключает необходимость передачи электроэнергии на большие расстояния.

Использование постоянного показателя предусматривается в автономных системах, к примеру, в автотранспорте, летательных средствах, морской технике и электропоездах. Широкое использование он получил при организации питания микросхем электроники, средств связи и иной техники, где количество помех максимально сводится к минимуму, вплоть до их полной ликвидации.

Вам это будет интересно Как определить емкость АКБ

В некоторых случаях он нашел применение в сварочных агрегатах, а также в железнодорожных локомотивах, медицине при введении в организм лекарственных препаратов посредством электрофореза.


Постоянный ток

Методы измерения напряжения и тока

Чтобы измерить показатели напряжения и тока применяются следующие способы:

  1. Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
  2. Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
  3. Мультиметр (мультитестер). С помощью специального тестера проводятся измерения любого типа тока, присутствующего в розетке — как переменного, так и постоянного. Также мультиметром проверяют уровень напряжения.
  4. Контрольная лампа. С помощью лампы определяют наличие электричества в розетке при условии, что лампочка в контрольном приборе соответствует напряжению в тестируемой розетке.

Перечисленной выше информации вполне достаточно для общего понимания принципов организации электрической сети в доме. Приступать к проведению любых электротехнических работ следует только с соблюдением всех мер безопасности и при наличии соответствующей квалификации.

Рассчитываем нагрузку

Самыми распространенными электророзетками являются такие, к которым подведен силовой кабель под напряжением 220в. В большей части жилых помещений используется силовая линия в 220 вольт. Существует ошибочное мнение, что в розетке 220в есть сила тока. Само устройство может только поддерживать определенную силу тока при подключеннии к нему бытовых приборов и техники.

Можно самостоятельно узнать, на сколько ампер рассчитана та или другая розетка. Обычно для этого используется специальное приспособление (амперметр), которое позволяет точно определить силу напряжения в сети. Амперметр позволяет узнать, какой силе электротока подвергается конкретный участок в цепи. В первую очередь для этого нужно сделать последовательную цепь, которая должна включать в себя – бытовой прибор, затем сила тока, которую нужно рассчитать, а затем и сам амперметр с результатом.

Измерительное устройство следует подключать так, чтобы соблюдалась полярность. Положительная полярность должна быть подсоединена к «+» самого источника электричества, а отрицательная к его «-». Если подсоединить все правильно, то значение на амперметре будет достаточно точным. Допустимая погрешность показаний может иметь значение меньше 1%. Этот прибор можно приобрести в специализированных магазинах.

Также можно сделать расчет силы тока без использования амперметра. Согласно физическим законам существует определенная зависимость между напряжением в электрической сети и силы тока, которая по ней протекает. В связи с этим можно использовать закон Ома. Расчеты можно сделать по формуле I=U/R, где

I – сила электротока на определенном участке электрической цепи (ампер);

U – напряжение на этом же участке (вольт);

R – постоянное значение сопротивления проводника (ом).

Определить на сколько ампер рассчитана электророзетка можно и другим способом. В данной ситуации нам должно быть известно значение мощности электросети, а также вольтаж в используемой розетке.

Существует формула, по которой рассчитывают возможное развитие мощности электроприбора – P=I*U, где

P – мощность (ватт), а другие значения соответствуют тому же определению.

Преобразовав данную формулу, получим I=P/U. В этом случае сила электротока будет равняться соотношению мощности и напряжения. Так на 220 ваттной электросети при напряжении 220 вольт в обычной бытовой розетке сила тока будет равняться 1 А.

Правильное напряжение между нулем и землей

Нуль – это обратный путь для цепи переменного тока, которая должна выдерживать его в нормальном состоянии и правильно поддерживать исправную работу электроприборов. Этот ток может быть вызван многими причинами, главным образом из-за дисбаланса фазового тока. Могут быть и другие причины, но величина этого тока находится в аналогии фазного тока, и в немногих случаях она может быть вдвое выше фазного. Таким образом, нейтральный провод всегда считается заряженным (в активной цепи). Этот нейтральный провод подается на землю (заземление), чтобы вторая клемма нейтрального провода была равна нулю.

В то время, как фаза и нуль подключены к основной силовой проводке, земля может быть подсоединена к корпусу оборудования или к любой системе, которая в нормальном состоянии не несет ток, но в случае некоторого отказа изоляции, должна иметь некоторый незначительный заряд. Напряжение между нулем и землей также называется общим. Источники для синфазных напряжений в линиях электропередач различаются. Они могут возникать на частоте линии электропередачи на более высоких показателях (с источниками питания в режиме переключения и нелинейными электронными нагрузками современного оборудования).

Особенности:

  1. Частота 50/60 Гц является простой, но возможно падение ее до 45 Гц в нейтральном проводнике. Она в балансе в 3-фазных нагрузках увеличивается, поскольку нейтраль обычно уменьшена.
  2. Ведь, для 3 фаз обычно используется 1 нейтраль, и в идеале этот ток равен 0 (для сбалансированных нагрузок).
  3. Фазные токи взаимно компенсируют друг друга, но с балансировкой идет большее количество тока, что вызывает их падение, особенно, когда эта нейтраль уменьшена.

Если подключены другие источники на высокой частоте, значит синфазные напряжения рассогласовываются, из-за переключения электроники и индуцированного шума от внешних источников. 

Почему в США напряжение 100–127 В?

Еще в 1880 году Томас Эдисон предложил и запатентовал трехпроводную электрическую сеть постоянного тока, в которой было два провода +110 и -110 В и нулевой проводник. Такая сеть свободно питала лампу накаливания. Для ее работы необходимо было 100 В, а 10% Эдисон накинул, учитывая потери при движении тока в проводе.

Со временем Джордж Вестингауз начал применять переменный ток для бытовых потребителей. С того момента началась так называемая «война токов», в которой постоянный ток Эдисона отчаянно проигрывал. В 1898 году люди начали массово переходить на применение переменного тока.

С того момента начал работать стандарт сетей в 100-127 В. В США ЭУ запитаны от переменного тока с заземлением TN-C-S. При этом одна фаза от вторичной обмотки понижающего трансформатора подается в трехпроводную сеть 120/240 В (с расчетами погрешности). Поэтому в дом к американскому жителю приходят три провода: две фазы и ноль. Между нулем и фазой напряжение 120 В — для маломощных потребителей, а между фазами — 240 В, для мощных бойлеров, варочных панелей и обогревателей.

Со временем в Европе начали использовать лампы с нитью накаливания из металла, для которой необходимо напряжение выше, чем 110 В. Так начали появляться сети с напряжением в 220 В. Потери электроэнергии в таких сетях вчетверо ниже, чем в сетях 110 В. Почему же тогда США не перешла на 220 В? Ответ кроется в экономической невыгодности таких реформ. Во-первых, сеть 110–127 В — это возможность борьбы с импортом техники, то есть американцы в большинстве своем используют устройства своего производства. Во-вторых, поражение электрическим током при 110 В гораздо слабее, чем при 220 В (многое зависит от времени воздействия тока). В-третьих, переход на «новую» сеть — это затраты миллиардов долларов на перестройку подстанций и других электроустановок.

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого. Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2. Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности

Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

Подводя итоги

Как видите, напряжение 220 В является пережитком старой системы, которые все еще допускается в ваших розетках в качестве частного варианта, как производной от номинала 230 В. Но что касается разброса от минимума до максимума, то здесь следует быть особенно осторожным. Все дело в том, что большинство производителей выпускают бытовое оборудование на определенные пределы напряжения, к примеру от 200 до 240 В, поэтому в случае повышения разности потенциалов на отметку 250 В, являющуюся допустимой, прибор может попросту выйти со строя.

Если у вас в квартире наблюдается подобная ситуация, можете сделать простую процедуру:

проверьте норму на интересующем вас приборе;


Рис. 2: проверьте норму напряжения

измерьте напряжение в розетке;


Рис. 3. Замерьте напряжение в сети

сопоставьте эти величины.

Если напряжение в сети значительно больше допустимого для устройства, вам понадобится стабилизатор или новый прибор. Если же номинал напряжения в сети больше допустимого ГОСТом, то срочно обращайтесь в энергоснабжающую организацию.