Перевод единиц измерения ёмкости электрической, электрической емкости, маркировка конденсаторов

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

конденсатор

Конденсатор можно сравнить с небольшой батареей, он может быстро накапливать электричество и быстро переносить его. Основным параметром конденсатора является его мощность (C)

Важной особенностью конденсатора является то, что он работает от переменного тока, чем больше частота переменного тока, тем ниже сопротивление. Конденсатор постоянного тока не проходит

Резисторы представляют собой конденсаторы с постоянной емкостью и переменной емкостью.

Использование конденсаторов находится в колебательных цепях, различных фильтрах, для разделения цепей постоянного и переменного тока и в качестве блокирующих элементов.

Блок базовой мощности — фарад (Φ) Это очень большое количество, которое не используется на практике. В электронике конденсаторы с фракционной мощностью пикофарада (пФ) до десяти тысяч микрофарад (мкФ).

1 мкФ равно миллионной части Фарада, а 1 пФ — миллионная часть микрофарада.

Зачем нужна маркировка?

Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:

  • данные о ёмкости конденсатора – главной характеристике элемента;
  • сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
  • данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
  • процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
  • дату выпуска.

Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.

Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.

Конденсатор, устройство стандартной емкости

Электронное устройство, специально предназначенное для изменения напряжения пропорционально накопленному заряду, называется конденсатором.

Почти каждое тело естественно образует конденсатор друг с другом, но оно становится электронным устройством, когда оно имеет точно определенную емкость, что позволяет использовать его в радиоэлектронных схемах.

Таким образом, один усилитель подает конденсатор с мощностью одного фарада на один вольт в секунду.

Напряжение на конденсаторе в настоящее время невозможно изменить, поскольку в природе нет бесконечного потока. Если клеммы заряженного конденсатора закрыты, ток должен быть непрерывным.

Фактически, конденсатор и его терминалы имеют некоторое внутреннее сопротивление, поэтому текущая мощность является окончательной, но она может быть очень большой. Аналогично, если разряженный конденсатор подключен к источнику напряжения.

Поток будет склонен к бесконечности и будет ограничен внутренним сопротивлением конденсатора и источником напряжения.

Многие ошибки в коммутационных и импульсных схемах связаны с тем, что разработчики забывают учитывать тот факт, что напряжение на конденсаторе не может быть немедленно изменено. Быстрорастворимый транзистор, который напрямую подключен к заряженному конденсатору, может легко гореть или сильно нагреваться.

Объем панели и генератора Van de Graaff

Конденсаторы обычно представляют собой две пластины, накладывающие слой диэлектрических слоев.

[Емкость между двумя панелями, Φ

] = [Диэлектрическая проницаемость вакуума, F / m ] * [Диэлектрическая диэлектрическая проницаемость между пластинами ] * [Поверхность панели, м² м] / [Расстояние между пластинами, м

[Диэлектрическая проницаемость вакуума, F / m

] приблизительно равна 8,854E-12, [Расстояние между пластинами, м ] намного меньше линейных размеров пластин.

Давайте подумаем о таком интересном случае.

Предположим, у нас есть две панели с определенной разницей потенциалов. Мы начинаем физически проводить их в космосе. Мы используем энергию, потому что панели притягивают друг друга. Напряжение между пластинами будет увеличиваться, потому что заряд остается неизменным, а емкость уменьшается.

Этот принцип основан на работе генератора Ван де Граафа. На конвейерной ленте имеются металлические пластины или зернистые материалы, которые могут нести наполнитель.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения. Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента

Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Цветовая маркировка конденсаторов

Ещё один способ маркировки конденсаторов — нанесение цветных полос или точек. В данном случае имеет значение не только цвет, но и положение полосы или точки по отношению к другим. Так как нужно не ошибиться с началом иначе расшифровка будет не точная, а это чревато.

Расшифровка цветовой маркировки конденсаторов

По положению полоски/точки обозначают следующее:

  • первые три — это ёмкость, но без указания размерности;
  • четвёртая — множитель (показатель отрицательной степени);
  • пятая — допуск;
  • шестая и седьмая — температурный коэффициент.

Первые четыре полоски должны быть всегда. Если дальше какая-то (или всё) отсутствует, это значит, что либо параметр не нормирован, либо просто не указан. Если надо знать точно, придётся искать точные данные.

Маркировка отечественных конденсаторов

Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.

Ёмкость

Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».

Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.

  • 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
  • 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
  • 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
  • 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.

Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.

В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.

Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.

Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.

Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.

Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.

Номинальное напряжение

Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.

Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.

Дата выпуска

Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.

“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц — двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).

4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”

Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.

Пожалуйста, помогите c переводом:

В Италии призывают снять санкции с России

В северо-восточном регионе Италии Венето призывают ЕС и правительство Италии отменить санкции против России. Соответствующую резолюцию принял Региональный совет Венето. Об этом в среду, 11 апреля, сообщает агентство ANSA.

За резолюцию под названием «Российское или венецианское эмбарго» проголосовали 36 советников, против были восемь, двое воздержались.

Русский-Английский

Длина ущелья — 446 км. Его ширина в верхней части колеблется в пределах 6-30 км., в нижней — от 800 до 1000 метров. Максимальная глубина достигает отметки в 1700-1800 метров.

Русский-Английский

Все остальные причины (плохая успеваемость, неразделенная любовь, конфликт с учителем и т.д.) можно преодолеть, если ребенок знает, что дома его любят и ждут, и у него впереди светлое будущее. Полноценное общение ребенка с родителями научит быть уверенным в себе, относиться к происходящему с оптимизмом

Русский-Английский

Уважаемый друг! Ваше пожелание будет сделано, будут добавлены вам бонусы. До встречи

Русский-Английский

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы. Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы, в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы, представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Кратные и дольные единицы[ | код]

Образуются с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ф декафарад даФ daF 10−1 Ф децифарад дФ dF
102 Ф гектофарад гФ hF 10−2 Ф сантифарад сФ cF
103 Ф килофарад кФ kF 10−3 Ф миллифарад мФ mF
106 Ф мегафарад МФ MF 10−6 Ф микрофарад мкФ µF
109 Ф гигафарад ГФ GF 10−9 Ф нанофарад нФ nF
1012 Ф терафарад ТФ TF 10−12 Ф пикофарад пФ pF
1015 Ф петафарад ПФ PF 10−15 Ф фемтофарад фФ fF
1018 Ф эксафарад ЭФ EF 10−18 Ф аттофарад аФ aF
1021 Ф зеттафарад ЗФ ZF 10−21 Ф зептофарад зФ zF
1024 Ф иоттафарад ИФ YF 10−24 Ф иоктофарад иФ yF
применять не применяются или редко применяются на практике
  • Дольную единицу пикофарад до 1967 года называлимикромикрофарада (русское обозначение: мкмкф; международное: µµF).
  • На схемах электрических цепей и (часто) в маркировке ранних конденсаторов советского производства целое число (например, «47») означало ёмкость в пикофарадах, а десятичная дробь (например, «10,0» или «0,1») — в микрофарадах; никакие буквенные обозначения единиц измерения ёмкости на схемах не применялись… Позже и до сегодняшних дней: любое число без указания единицы измерения — ёмкость в пикофарадах; с буквой н — в нанофарадах; а с буквамимк — в микрофарадах. Использование других единиц ёмкости на схемах не стандартизовано (как и обозначение номинала на конденсаторах). На малогабаритных конденсаторах используют различного рода сокращения: например, после двух значащих цифр ёмкости в пикофарадах указывают число следующих за ними нулей (таким образом, конденсатор с обозначением «270» имеет номинальную ёмкость 27 пикофарад, а «271» — 270 пикофарад)[источник не указан 2610 дней ].
  • В текстах на языках, использующих латиницу, очень часто при обозначении микрофарад в тексте заменяют букву µ (мю) на латинскую u («uF» вместо «µF») из-за отсутствия в раскладке клавиатуры греческих букв.

Основные параметры танталовых конденсаторов

Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

  • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
  • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
  • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
  • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

Прочие способы измерения

Максимальной точности данных можно достигнуть при применении индикатора иммитанса. Проблема в том, что такие устройства требуют больших бюджетных вложений, зачастую имея цену более 100 тысяч рублей. Еще один способ – собрать цепь из резистора и конденсатора. Предварительно у первого замеряют сопротивление, а также измеряют напряжение источника питания. Собрав цепь, емкостной элемент закорачивают, подключают цепь к питанию, замеряют напряжение и умножают на 0,95. После раскорачивания замеряют время, за которое напряжение упадет от 100 до 95%. Эту цифру надо поделить на утроенное резисторное сопротивление. Это и будет емкостной показатель в фарадах.

Единицу фарад используют для описания емкостных показателей, как конденсаторных устройств, так и проводников. Для правильного подбора деталей необходимо уметь расшифровывать маркировку на корпусе.

Кодовая маркировка, дополнение

   В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

   Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Код Емкость Емкость Емкость
109 1,0 0,001 0,000001
159 1,5 0,0015 0,000001
229 2,2 0,0022 0,000001
339 3,3 0,0033 0,000001
479 4,7 0,0047 0,000001
689 6,8 0,0068 0,000001
100* 10 0,01 0,00001
150 15 0,015 0,000015
220 22 0,022 0,000022
330 33 0,033 0,000033
470 47 0,047 0,000047
680 68 0,068 0,000068
101 100 0,1 0,0001
151 150 0,15 0,00015
221 220 0,22 0,00022
331 330 0,33 0,00033
471 470 0,47 0,00047
681 680 0,68 0,00068
102 1000 1,0 0,001
152 1500 1,5 0,0015
222 2200 2,2 0,0022
332 3300 3,3 0,0033
472 4700 4,7 0,0047
682 6800 6,8 0,0068
103 10000 10 0,01
153 15000 15 0,015
223 22000 22 0,022
333 33000 33 0,033
473 47000 47 0,047
683 68000 68 0,068
104 100000 100 0,1
154 150000 150 0,15
224 220000 220 0,22
334 330000 330 0,33
474 470000 470 0,47
684 680000 680 0,68
105 1000000 1000 1,0

   * Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

   Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Код Емкость Емкость Емкость
1622 16200 16,2 0,0162
4753 475000 475 0,475

Рис. 6

С. Маркировка емкости в микрофарадах

   Вместо десятичной точки может ставиться буква R.

Код Емкость
R1 0,1
R47 0,47
1 1,0
4R7 4,7
10 10
100 100

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

   В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Код Емкость
p10 0,1 пФ
Ip5 1,5 пФ
332p 332 пФ
1НО или 1nО 1,0 нФ
15Н или 15n 15 нФ
33H2 или 33n2 33,2 нФ
590H или 590n 590 нФ
m15 0,15мкФ
1m5 1,5 мкФ
33m2 33,2 мкФ
330m 330 мкФ
1mO 1 мФ или 1000 мкФ
10m 10 мФ

Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

   Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

   Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код Емкость Напряжение
А6 1,0 16/35
А7 10 4
АА7 10 10
АЕ7 15 10
AJ6 2,2 10
AJ7 22 10
AN6 3,3 10
AN7 33 10
AS6 4,7 10
AW6 6,8 10
СА7 10 16
СЕ6 1,5 16
СЕ7 15 16
CJ6 2,2 16
CN6 3,3 16
CS6 4,7 16
CW6 6,8 16
DA6 1,0 20
DA7 10 20
DE6 1,5 20
DJ6 2,2 20
DN6 3,3 20
DS6 4,7 20
DW6 6,8 20
Е6 1,5 10/25
ЕА6 1,0 25
ЕЕ6 1,5 25
EJ6 2,2 25
EN6 3,3 25
ES6 4,7 25
EW5 0,68 25
GA7 10 4
GE7 15 4
GJ7 22 4
GN7 33 4
GS6 4,7 4
GS7 47 4
GW6 6,8 4
GW7 68 4
J6 2,2 6,3/7/20
JA7 10 6,3/7
JE7 15 6,3/7
JJ7 22 6,3/7
JN6 3,3 6,3/7
JN7 33 6,3/7
JS6 4,7 6,3/7
JS7 47 6,3/7
JW6 6,8 6,3/7
N5 0,33 35
N6 3,3 4/16
S5 0,47 25/35
VA6 1,0 35
VE6 1,5 35
VJ6 2,2 35
VN6 3,3 35
VS5 0,47 35
VW5 0,68 35
W5 0,68 20/35

В. Маркировка 4 символами

   Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

   Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка ТКЕ

Конденсаторы с ненормируемым ТКЕ

* Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с линейной зависимостью от температуры

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85’С.

** Современная цветовая кодировка. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Конденсаторы с нелинейной зависимостью от температуры

* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим.

Например, фирма PHILIPS для группы Y5P нормирует -55…+125 њС.

*** В соответствии с EIA. Некоторые фирмы, например Panasonic, пользуются другой кодировкой.

Особенности кодировки конденсаторов производства СССР

В СССР придерживались стандартов МЭК, поэтому можно пользоваться вышеприведенными данными, но были и незначительные отличия.

Кодированное обозначение номинальных емкостей состоит из двух или трех цифр и буквы. Буква кода является множителем, составляющим значение емкости (см. таблицу), и определяет положение десятичной дроби.

Допускаемое отклонение величины емкости в процентах от номинального значения указывают теми же буквами, что и допуски на сопротивление резисторов, однако, с некоторыми дополнениями (см. таблицу). Для конденсаторов емкостью менее 10 пФ допускаемое отклонение устанавливается в пикофарадах:

Конденсаторы маркируются кодом в следующем порядке:

  • номинальная емкость;
  • допускаемое отклонение емкости;
  • ТКЕ и (или) номинальное напряжение.

Приведем примеры кодированной маркировки конденсаторов.

Сокращенная буквенно-цифровая маркировка на конденсаторе 33pKL обозначает номинальную емкость 33 пФ с допускаемым отклонением ±10% и температурной нестабильностью группы М75 (75х10-6 °C-1). Надпись m10SF обозначает 100 мкФ (0,1 миллифарады) с допуском -20…+50% и номинальным напряжением 20 В.

Номинальная емкость 150 пФ может обозначаться 150р или n15; 4700пф — 4n7; 0,15 мкФ — µ15; 2.2мкф — 2µ2.

Емкость
Множитель Код Значение
10-12 p пикофарады
10-9 n нанофарады
10-6 ч микрофарады
10-3 m миллифарады
1 F фарады

Примечание. В скобках указано старое обозначение допуска.

Напр. В Букв. обозн. Напр. В Букв. обозн. Напр. В Букв. обозн. Напр. В Букв. обозн Напр. В Букв. обозн
1,0 I 6.3 B 40 S 100 N 350 T
2,5 M 10 D 50 J 125 P 400 Y
3.2 A 16 E 63 K 160 Q 450 U
4.0 C 20 F 80 L 315 X 500 V

Танталово-полимерные конденсаторы

Большая часть проблем, характерных для танталовых конденсаторов, решена в танталово-полимерных аналогах. В качестве электролита в танталово-полимерных конденсаторах вместо диоксида марганца используется токопроводящий полимер. Он дает минимальный ESR, что позволяет пропускать гораздо большие токи, по сравнению с танталовыми предшественниками. Танталово-полимерные устройства успешно применяются в качестве сглаживающих конденсаторов в источниках питания и преобразователях напряжения.

Токопроводящий полимер обеспечивает низкую чувствительность к импульсам тока, стойкость к внешним факторам, отсутствие деградации структуры, более высокий срок службы. Высокая стабильность емкости в широком интервале частот и температур позволяет применять танталово-полимерные устройства в промышленной, телекоммуникационной и автомобильной электронике и других областях, для которых характерно колебание рабочих температур.