Текстовый экран 16×2 / i²c: инструкция по подключению и примеры использования

Содержание

Подключение ЖК экрана к Ардуино по I2C

Для подключения необходимы сама плата Ардуино, дисплей, макетная плата, соединительные провода и потенциометр.

Если вы используете специальный отдельный i2c переходник, то нужно сначала припаять его к модулю экрана. Ошибиться там трудно, можете руководствоваться такой схемой.

Жидкокристаллический монитор с поддержкой i2c подключается к плате при помощи четырех проводов – два провода для данных, два провода для питания.

  • Вывод GND подключается к GND на плате.
  • Вывод VCC – на 5V.
  • SCL подключается к пину A5.
  • SDA подключается к пину A.

И это все! Никаких паутин проводов, в которых очень легко запутаться. При этом всю сложность реализации i2C протокола мы можем просто доверить библиотекам.

Установка библиотеки LiquidCrystal I2C

Для работы с данным модулем необходимо установить библиотеку LiquidCrystal I2C. Скачиваем, распаковываем и закидываем в папку libraries в папке Arduino. В случае, если на момент добавления библиотеки, Arduino IDE была открытой, перезагружаем среду.

Библиотеку можно установить из самой среды следующим образом:

  1. В Arduino IDE открываем менеджер библиотек: Скетч->Подключить библиотеку->Управлять библиотеками…
  2. В строке поиска вводим «LiquidCrystal I2C», находим библиотеку Фрэнка де Брабандера (Frank de Brabander), выбираем последнюю версию и кликаем Установить.
  3. Библиотека установлена (INSTALLED).

Проблемы подключения LCD1602 к Arduino по I2C

Если после загрузки скетча у вас не появилось никакой надписи на дисплее, попробуйте выполнить следующие действия:

  1. Можно регулировать контрастность индикатора потенциометром. Часто символы просто не видны из-за режима контрастности и подсветки.
  2. Проверьте правильность подключения контактов, подключено ли питание подсветки. Если вы использовали отдельный I2C переходник, то проверьте еще раз качество пайки контактов.
  3. Проверьте правильность I2C адреса. Попробуйте сперва поменять в скетче адрес устройства с 0x20 до 0x27 для PCF8574 или с 0x38 до 0x3F для PCF8574A. Если и это не помогло, можете запустить скетч I2C сканера, который просматривает все подключенные устройства и определяет их адрес методом перебора. Для изменения адресации необходимо установить джамперы в нужное положение, тем самым притянуть выводы A0, A1, A2 к положительному либо отрицательному потенциалу. На плате положения промаркированы.
  4. Если экран все еще останется нерабочим, попробуйте подключить LCD обычным образом.

Проблемы подключения i2c lcd дисплея

Если после загрузки скетча у вас не появилось никакой надписи на дисплее, попробуйте выполнить следующие действия.

Во-первых, можно увеличить или уменьшить контрастность монитора. Часто символы просто не видны из-за режима контрастности и подсветки.

Если это не помогло, то проверьте правильность подключения контактов, подключено ли питание подсветки. Если вы использовали отдельный i2c переходник, то проверьте еще раз качество пайки контактов.

Другой часто встречающейся причиной отсутствия текста на экране может стать неправильный i2c адрес. Попробуйте сперва поменять в скетче адрес устройства с 0x27 0x20 или на 0x3F. У разных производителей могут быть зашиты разные адреса по умолчанию. Если и это не помогло, можете запустить скетч i2c сканера, который просматривает все подключенные устройства и определяет их адрес методом перебора. Пример скетча i2c сканера.

Если экран все еще останется нерабочим, попробуйте отпаять переходник и подключить LCD обычным образом.

Описание методов библиотеки LiquidCrystal I2C

LiquidCrystal_I2C(uint8_t, uint8_t, uint8_t)

Конструктор для создания экземпляра класса, первый параметр это I2C адрес устройства, второй — число символов, третий — число строк.

LiquidCrystal_I2C(uint8_t lcd_Addr,uint8_t lcd_cols,uint8_t lcd_rows);

1 LiquidCrystal_I2C(uint8_tlcd_Addr,uint8_tlcd_cols,uint8_tlcd_rows);

init()

Инициализация ЖК-дисплея.

void init();

1 voidinit();

backlight()

Включение подсветки дисплея.

void backlight();

1 voidbacklight();

setCursor(uint8_t, uint8_t)

Установка позиции курсора.

void setCursor(uint8_t, uint8_t);

1 voidsetCursor(uint8_t,uint8_t);

clear()

Возвращает курсор в начало экрана.

void clear();

1 voidclear();

home()

Возвращает курсор в начало экрана и удаляет все, что было на экране до этого.

void home();

1 voidhome();

write(uint8_t)

Позволяет вывести одиночный символ на экран.

#if defined(ARDUINO) && ARDUINO >= 100
virtual size_t write(uint8_t);
#else
virtual void write(uint8_t);
#endif

1
2
3
4
5

#if defined(ARDUINO) && ARDUINO >= 100

virtualsize_twrite(uint8_t);

#else

virtualvoidwrite(uint8_t);

#endif

cursor()

Показывает курсор на экране.

void cursor();

1 voidcursor();

noCursor()

Скрывает курсор на экране.

void noCursor();

1 voidnoCursor();

blink()

Курсор мигает (если до этого было включено его отображение).

void blink();

1 voidblink();

noBlink()

Курсор не мигает (если до этого было включено его отображение).

void noBlink();

1 voidnoBlink();

display()

Позволяет включить дисплей.

void display();

1 voiddisplay();

noDisplay()

Позволяет отключить дисплей.

void noDisplay();

1 voidnoDisplay();

scrollDisplayLeft()

Прокручивает экран на один знак влево.

void scrollDisplayLeft();

1 voidscrollDisplayLeft();

scrollDisplayRight()

Прокручивает экран на один знак вправо.

void scrollDisplayRight();

1 voidscrollDisplayRight();

autoscroll()

Позволяет включить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.

void autoscroll();

1 voidautoscroll();

noAutoscroll()

Позволяет выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.

void noAutoscroll();

1 voidnoAutoscroll();

leftToRight()

Установка направление выводимого текста — слева направо.

void leftToRight();

1 voidleftToRight();

rightToLeft()

Установка направление выводимого текста — справа налево.

void rightToLeft();

1 voidrightToLeft();

createChar(uint8_t, uint8_t[])

Создает символ. Первый параметр — это номер (код) символа от 0 до 7, а второй — массив 8 битовых масок для создания черных и белых точек.

void createChar(uint8_t, uint8_t[]);

1 voidcreateChar(uint8_t,uint8_t);

Arduino I2C OLED display подключение

OLED (Organic Light-Emitting Diode) — это полупроводниковый прибор, излучающий свет при прохождении через него электрического тока. Управление модулем осуществляет с помощью чипа SSD1306, который поддерживает пять разных протоколов связи. Встречаются модули не только с протоколом IIC, но и с протоколом SPI, и даже олед дисплеи с возможностью выбора (переключения) между этими двумя протоколами.

Характеристики OLED I2C 128×64 / 128×32

  • Цвет экрана — монохромный;
  • Разрешение — 128×64 или 128×32;
  • Графический чип — SSD1306;
  • Интерфейс — I2C или SPI;
  • Питание модуля — от 3 до 5 В;
  • Размер модуля — 27x27x4 мм.


Распиновка OLED SPI и дисплея OLED IIC

Главным плюсом OLED 128×64 iic является работа модуля без подсветки, за счет чего обеспечивается низкое потребление тока этим модулем. А высокое разрешение OLED 128×64 px Arduino позволяет вывести на дисплей большее количество информации, в отличии от текстового экрана 1602. Для подключения используется четыре разъема — два провода для питания (5V и GND) и два провода для шины IIC (SDA и SCL).

Шаг 3. Подключаем ЖК-дисплей

Перед тем как подключать дисплей и передавать на него информацию, стоит проверить его работоспособность. Сперва подайте напряжение на VSS и VDD контроллер, запитайте подсветку (A, K), далее настройте контрастность.

Для таких настроек подойдёт потенциометр с 10 кОм, форма его не важна. На крайние ноги подают +5V и GND, а ножку по центру соединяют с VO выводом.

Когда на схему подаётся питание, нужно добиться необходимого контраста, если он настраивается неправильно, то и изображение на экране видно не будет. Чтобы настроить контраст, нужно «поиграть» с потенциометром. Когда схема будет собрана правильно и контраст настроен верно, верхняя строка на экране должна заполниться прямоугольниками.

Чтобы дисплей работал, применяется встроенная в Arduino IDE среду специальная библиотека LiquidCrystal.h, о которой я напишу ниже. Он может действовать в 8-битном и в 4-битном режиме. В первом варианте применяют лишь младшие и старшие биты (BB0-DB7), во втором – только младшие (BB4-DB7).

Но применение 8-битного режима в этом дисплее – неправильное решение, преимущества в скорости почти нет, поскольку частота обновления у него всегда меньше 10 раз за секунду. Чтобы выводился текст, надо присоединить выводы DB7, DB6, DB5, DB4, E и RS к выводам контроллера. Присоединять их допустимо к любым пинам Arduino, главное – задание верной последовательности в коде.

Если необходимого символа пока что нет в памяти контроллера, то можно его определить вручную (всего до семи символов). Ячейка в рассматриваемых дисплеях имеет расширение в пять на восемь точек. Задача создания символа в том, чтобы написать битовую маску и расставить единички в местах, где точки должны гореть, а нолики – где не должны. Рассмотренная выше схема подключения не всегда хороша, т. к. на Arduino занимается минимум шесть цифровых выходов.

Русификация LCD 1602 I2C дисплея

Перед загрузкой следующего скетча, необходимо установить библиотеку LCD_1602_RUS.h для русификации дисплея 1602 Ардуино. Архив с библиотекой можно скачать на нашем сайте на странице — Библиотеки для Ардуино. После установки библиотеки из архива загрузите в микроконтроллер небольшой пример с кодом для LCD, который значительно упростит для вас вывод кириллицы на дисплей.

Скетч с библиотекой LCD_1602_RUS.h

#include <Wire.h> // библиотека для управления устройствами по I2C 
#include <LCD_1602_RUS.h> // подключаем библиотеку LCD_1602_RUS

LCD_1602_RUS LCD(0x27,16,2); // присваиваем имя LCD для дисплея

void setup() {
   LCD.init(); // инициализация LCD дисплея
   LCD.backlight(); // включение подсветки дисплея
   
   LCD.setCursor(2,0); // ставим курсор на 3 символ первой строки
   LCD.print("РУСИФИКАЦИЯ!"); // печатаем символ на первой строке
}

void loop() {
 
}

Вариант 1. Подключение LCD 1602 к Ардуине через I2C-модуль

Схема подключения показана на рисунке:

т.е. провода соединяются следующим образом:

SCL — последовательная линия тактирования (Serial CLock);

SDA — последовательная линия данных (Serial Data);

Для работы с дисплеем при таком подключении (т.е. через модуль I2C) можно использовать стандартную библиотеку LiquidCrystal_I2C1602V1 — её нужно распаковать в папку arduino/libraries , если её там нет (хотя обычно уже есть).

А вот базовый пример программы для вывода информации на дисплей.

Здесь использовался адрес 0x27 шины I2C. У некоторых модулей этот адрес может быть 0x3F. Это возможно определить по маркировке. Вообще говоря, этот адрес можно менять (с помощью паяльника) — такой нехитрый метод позволят в теории подключить более одного дисплея к одной ардуине.

7Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов «A», «B» и «С» на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».

Временная диаграмма вывода латинских символов «A», «B» и «С» на LCD дисплей 1602

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами,
первый из которых определяет номер столбца таблицы, а второй – номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E (Enable), а линия RS (Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.

Временная диаграмма вывода символа «Сердце» из ПЗУ на ЖК дисплей 1602

Опять, первые два импульса Enable соответствуют инструкции Home() (0000 00102) – возврат каретки на позицию (0; 0), а вторые два – вывод на ЖК дисплей хранящийся в ячейке памяти 310 (0000 00112) символ «Сердце» (инструкция lcd.createChar(3, heart); скетча).

Графический ЖК (жидкокристаллический) дисплей 128х64

Данный дисплей отличается малым энергопотреблением и подходит для использования в устройствах, питание которых осуществляется от батареек. Он поддерживает диапазон питающих напряжений от 2.2v до 5.5v, 8/4-битный параллельный режим работы и поставляется вместе с микросхемой контроллера/драйвера ST7290. Кроме параллельного режима работы можно также использовать последовательный режим работы по шине PSB (processor side bus) (PIN 15). Этот графический ЖК дисплей имеет автоматическое управление мощностью и возможность программного сброса, что позволяет без проблем подключать его к большинству современных микропроцессорных платформ, например, 8051, AVR, ARM, Arduino и Raspberry Pi.

При необходимости более подробного изучения возможностей данного ЖК дисплея вы можете изучить даташит на него.

Назначение контактов графического ЖК дисплея ST7920 приведено в следующей таблице.

№ контакта Название контакта Описание
1 Gnd земля
2 Vcc входное питающее напряжение (от 2.7v до 5.5v)
3 Vo контрастность
4 RS Выбор регистра: RS = 0 — регистр инструкций, RS = 1 — регистр данных
5 R/W управление чтением/записью
6 E Enable (доступность)
7,8,9,10,11,12,13,14 DB0, DB1, DB2, DB3, DB4, DB5, DB6, DB7 контакты данных (возможна работа в 8 и 4-битном режиме)
15 PSB выбор интерфейса: Low(0) — последовательная связь, High (1) — 8/4 параллельный режим
16 NC Not connected (не соединен)
17 RST Reset Pin (сброс)
18 Vout выходное напряжение (Vout<=7 В)
19 BLA подсветка (положительный вывод)
20 BLK подсветка (отрицательный вывод)

Примеры работы для Arduino

Для упрощения работы с LCD-дисплеем используйте встроенную библиотеку Liquid Crystal. В ней вы найдёте примеры кода с подробными комментариями.

Библиотека подходит как для работы с контроллерами на AVR-платформе, так и с ARM-контроллерами.

Для вывода первой программы приветствия, воспользуйтесь кодом вроде этого:

Существует два способа вывода кириллицы на текстовые дисплеи:

Рассмотрим оба способа более подробно.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв. Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Так букве Я соответствует код B1 в шестнадцатеричной системе. Чтобы передать на экран строку «Яndex», необходимо в явном виде с помощью последовательности x## встроить в строку код символа:

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность x , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона 0-9 и A-F следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две записанные рядом строки склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

Используя полученную информацию выведем на дисплей сообщение «Привет, Амперка!»:

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

Полную таблицу символов с кодами можно найти в документации к экрану.

Использование библиотеки Liqu >

Совсем не обязательно мучатся со знакогенератором, чтобы вывести русский символ. Для решения проблемы скачайте и установите библиотеку LiquidCrystalRus.

Это копия оригинальной библиотеки LiquidCrystal с добавлением русского языка. Добавленный в библиотеку код трансформирует русские символы UTF8 в правильные коды для текстового экрана.

В качестве примера выведем фразу «Привет, Амперка» на дисплей.

5Создание собственных символов для ЖК дисплея

Немного подробнее рассмотрим вопрос создания собственных символов для ЖК экранов. Каждый символ на экране состоит из 35-ти точек: 5 в ширину и 7 в высоту (+1 резервная строка для подчёркивания). В строке 6 приведённого скетча мы задаём массив из 7-ми чисел: {0x0, 0xa, 0x1f, 0x1f, 0xe, 0x4, 0x0}. Преобразуем 16-ричные числа в бинарные: {00000, 01010, 11111, 11111, 01110, 00100, 00000}. Эти числа – не что иное, как битовые маски для каждой из 7-ми строк символа, где «0» обозначают светлую точку, а «1» – тёмную. Например, символ сердца, заданный в виде битовой маски, будет выглядеть на экране так, как показано на рисунке.

Создание собственного символа для LCD экрана

OLED I2C 128 x 64 px – схема подключения к Arduino

В небольших устройствах тоже бывает нужно вывести какую-либо полезную информацию, сохраняя компактные габариты.

Обычные экраны, вроде Nokia 3310, не обеспечивают достаточного разрешения, к тому же их не видно в темноте.

В различных плеерах, электронных сигаретах и прочем давно уже используют компактные OLED-дисплеи с большим для их габаритов разрешением – так чем наши проекты хуже?

Важным плюсом OLED-экранов является работа без подсветки – каждый пиксель – сам себе подсветка. За счёт такой системы, экран потребляет крайне мало тока (фактически, его можно запитать от пина Arduino). Есть и один минус – при постоянном использовании отдельные пиксели начинают выгорать и терять яркость, но до наступления этого состояния вы успеете отладить и вывести всё, что только можно.

Дисплей подключается по высокоскоростному интерфейсу I2C (относительно высокоскоростному – до 400Кбод) и использует всего 2 сигнальных провода. Это ещё один неоспоримый плюс! Несмотря на то, что интерфейс последовательный, да ещё и данные в обе стороны идут по одной линии, на рядовой Arduino можно достичь порядка 15-20fps, чего более чем достаточно для проектов.

Стоит заметить, что дисплей монохромный – цветные картинки на него не выведешь, а для текста или графика хватит и двух цветов.

Всего у дисплея 4 пина – VCC, GND, SDA, SCL. VCC и GND подключаются к VCC и GND Arduino соответственно (чтобы перестраховаться, лучше питать дисплей от пина 3.3В – не на всех модулях стоят понижающие преобразователи), а линии данных находятся у каждой версии Arduino на разных пинах. У Uno (Nano, Pro Mini и других платах на ATMega328/168) SDA – A4, SCL – A5. У Mega – SDA – 20, SCL – 21.

На платах 3 ревизии контакты интерфейса выведены перед 13 пином на гребёнке и подписаны соответственно.

Для экрана написано множество библиотек, его поддерживает в том числе и универсальная U8g2.
Для управления дисплеем нам потребуются две библиотеки:

1) Adafruit_GFX_Library — мы её уже ставили, когда подключали Nokia 5110

2) Adafruit_SSD1306 — библиотека для управления именно OLED дисплеями

Устанавливаем обе библиотеки в Arduino IDE, и пробуем вывести наш любимый «Hello world!»:

Схема подключения OLED 128 x 64 к Arduino #include «SPI.h»
#include «Wire.h»
#include «Adafruit_GFX.h»
#include «Adafruit_SSD1306.h»
#define OLED_MOSI 9
#define OLED_CLK 10
#define OLED_DC 11
#define OLED_CS 12
#define OLED_RESET 13

Adafruit_SSD1306 display(OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);

void setup() {
// инициализация и очистка дисплея
display.begin(SSD1306_SWITCHCAPVCC);
display.clearDisplay();
display.display();

delay(1000);
display.setTextSize(1); // установка размера шрифта
display.setTextColor(WHITE); // установка цвета текста
display.setCursor(0,0); // установка курсора

display.println(«Hello, world!»);
display.display();
}

void loop() {
}

#include «Adafruit_GFX.h»#include «Adafruit_SSD1306.h»Adafruit_SSD1306 display(OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);// инициализация и очистка дисплеяdisplay.begin(SSD1306_SWITCHCAPVCC);display.setTextSize(1); // установка размера шрифтаdisplay.setTextColor(WHITE); // установка цвета текстаdisplay.setCursor(0,0); // установка курсораdisplay.println(«Hello, world!»);

Ответить

Описание протокола I2C

Прежде чем обсуждать подключение дисплея к ардуино через i2c-переходник, давайте вкратце поговорим о самом протоколе i2C.

I2C / IIC(Inter-Integrated Circuit) – это протокол, изначально создававшийся для связи интегральных микросхем внутри электронного устройства. Разработка принадлежит фирме Philips. В основе i2c  протокола является использование 8-битной шины, которая нужна для связи блоков в управляющей электронике, и системе адресации, благодаря которой можно общаться по одним и тем же проводам с несколькими устройствами. Мы просто передаем данные то одному, то другому устройству, добавляя к пакетам данных идентификатор нужного элемента.

Самая простая схема I2C может содержать одно ведущее устройство (чаще всего это микроконтроллер Ардуино) и несколько ведомых (например, дисплей LCD). Каждое устройство имеет адрес в диапазоне от 7 до 127. Двух устройств с одинаковым адресом в одной схеме быть не должно.

Плата Arduino поддерживает i2c на аппаратном уровне. Вы можете использовать пины A4 и A5 для подключения устройств по данному протоколу.

В работе I2C можно выделить несколько преимуществ:

  • Для работы требуется всего 2 линии – SDA (линия данных) и SCL (линия синхронизации).
  • Подключение большого количества ведущих приборов.
  • Уменьшение времени разработки.
  • Для управления всем набором устройств требуется только один микроконтроллер.
  • Возможное число подключаемых микросхем к одной шине ограничивается только предельной емкостью.
  • Высокая степень сохранности данных из-за специального фильтра подавляющего всплески, встроенного в схемы.
  • Простая процедура диагностики возникающих сбоев, быстрая отладка неисправностей.
  • Шина уже интегрирована в саму Arduino, поэтому не нужно разрабатывать дополнительно шинный интерфейс.

Недостатки:

  • Существует емкостное ограничение на линии – 400 пФ.
  • Трудное программирование контроллера I2C, если на шине имеется несколько различных устройств.
  • При большом количестве устройств возникает трудности локализации сбоя, если одно из них ошибочно устанавливает состояние низкого уровня.

Конвертирование изображения в шестнадцатеричный код

Для того, чтобы иметь возможность отображения изображения на графическом ЖК дисплее необходимо знать шестнадцатеричный код (HEX code) данного изображения. Далее мы рассмотрим несколько шагов чтобы выполнить подобное конвертирование. Но перед этим удостоверьтесь в том, что размер вашего изображения не превышает 128х64.

Шаг 1. Уменьшите размер вашего изображения до 128х64 или менее. Это можно сделать в любом графическом редакторе, например, MS paint.

Шаг 2. Сохраните изображение в формате bmp (“image_name.bmp”).

Шаг 3. Конвертирование полученного изображения в шестнадцатеричный код. Для этого можно использовать, к примеру, редактор GIMP 2. На следующем рисунке показан пример открытия изображения в данном редакторе.

Шаг 4. После открытия изображения (в формате bmp) в редакторе GIMP 2 сохраните его в формате “.xbm” (X BitMap) (см. рисунок ниже). После этого откройте полученный файл в любом текстовом редакторе, например, Notepad, и вы получите шестнадцатеричный код изображения.

Сначала выберите опцию «Export as» в редакторе.

Затем выберите формат, показанный на следующем рисунке, и нажмите кнопку Export.

После этого экспортирования вы получите файл в формате “.xbm”. Откройте его с помощью Notepad (или любого другого аналогичного редактора) и вы получите шестнадцатеричный код изображения как показано на следующем рисунке.

Примеры работы для Iskra JS

Для работы с LCD-дисплеем из среды Espruino существует библиотека HD44780.

Для вывода программы приветствия, воспользуйтесь скриптом:

Кирилица

Вывод кирилицы на дисплей с помощью платформы Iskra JS доступен через встроенную в дисплей таблицу знакогенератора.

Таблица знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора, которые состоят из различных символов и букв. Для вывода символа на дисплей необходимо передать его номер в шестнадцатеричной системе из таблицы знакогенератора.

Так букве Я соответствует код B1 в шестнадцатеричной системе. Чтобы передать на экран строку «Яndex», необходимо в явном виде с помощью последовательности x## встроить в строку код символа:

Вы можете смешивать в одной строке обычные символы и явные коды как угодно. Единственный нюанс в том, что после того, как компилятор в строке видит последовательность x , он считывает за ним все символы, которые могут являться разрядами шестнадцатеричной системы даже если их больше двух. Из-за этого нельзя использовать символы из диапазона 0–9 и A–F следом за двузначным кодом символа, иначе на дисплее отобразится неправильная информация. Чтобы обойти этот момент, можно использовать тот факт, что две строки записанные рядом склеиваются.

Сравните две строки кода для вывода надписи «Яeee»:

Используя полученную информацию выведем на дисплей сообщение «Привет, Амперка!»:

Переключение страниц знакогенератора

Дисплейный модуль хранит в памяти две страницы знакогенератора. По умолчанию установлена нулевая страница. Для переключения между страницами используйте методы:

Дисплей не может одновременно отображать символы разных страниц.

Рассмотрим пример, в котором одна и та же строка будет отображаться по-разному — в зависимости от выбранной страницы.

Полную таблицу символов с кодами можно найти в документации к экрану.

Практика

Теперь мы переходим к интересным вещам. Давайте проверим ЖК-дисплей. Сначала подключим контакты 5В и GND от Arduino Uno к шинам электропитания макетной платы. Затем  подключим  LCD 1602.  Данный LCD имеет две отдельные линии питания:

  1. Контакт 1 и контакт 2 для питания самого LCD 1602
  2. Контакт 15 и контакт 16 для подсветки LCD 1602

Подсоедините контакты 1 и 16 LCD на минус питания, а контакты 2 и 15 к + 5В.

Далее необходимо подключить контакт 3, который отвечает за контрастность и яркость дисплея. Для точной настройки контрастности необходимо подключить крайние выводы потенциометра сопротивлением 10 кОм к 5В и GND, а  центральный контакт (бегунок) потенциометра к контакту 3 на LCD дисплея.

Регулировка контрастности ЖК-дисплея с помощью потенциометра

Теперь включите Arduino и вы увидите подсветку. Поворачивая ручку потенциометра, вы должны заметить появление первой линии прямоугольников. Если это произойдет, поздравляем! Ваш ЖК-дисплей работает правильно.

Подключение и настройка

Дисплей MT-16S2H предназначен для вывода текста на латинице и кириллице.

Экран имеет 16 контактов для питания логики, взаимодействия с управляющей электроникой и подсветки.

Дисплей может работать в двух режимах:

Использовать восьмибитный режим не целесообразно. Для его работы требуется на 4 дополнительные ноги, а выигрыша по скорости практически нет.

Подключение дисплея к управляющей плате

В качестве примера подключим дисплей к управляющей плате Arduino Uno. Для подключения понадобится Breadboard Half и соединительные провода «папа-папа».

Аналогично можно подключить дисплей к платформе Iskra JS.

ЖК-дисплей LCD 1602: подключение к Arduino через I2C-модуль

Contents

В это статье мы рассмотрим способы подключения жидкокристаллического дисплея LCD 1602 (чип HD44780) к Arduino. Вообще говоря, LCD 0802 подключается аналогично.

Дисплей LCD 1602 наиболее ходовой из ЖК-дисплеев для ардуины, поскольку прост в подключении и программировании, и стоит недорого. Дисплей позволяет выводить на экран 2 строки по 16 символов в каждой, чего в принципе достаточно для простых приложений типа вывести текущее время и дату.

Сразу скажу, что проще всего этот дисплей будет подключать через IIC/I2C-модуль, что позволяет сильно сократить число проводов до четырех , два из которых — это питание. Стоит этот дополнительный модуль меньше стоимости дисплея. Собственно комплект дисплей + IIC/I2C-модуль, если брать на Али, обойдется меньше, чем в 2$ .

Так что нет смысла покупать их по отдельности.

В общем два основных способа подключения — это напрямую и через I2C-модуль. Давайте сначала рассмотрим способ через I2C-модуль, т.к. он наиболее практический.

3Библиотека для работы по протоколу I2C

Теперь нужна библиотека для работы с LCD по интерфейсу I2C. Можно воспользоваться, например, (ссылка в строке «Download Sample code and library»).
Библиотека для работы по протоколу I2C

Скачанный архив LiquidCrystal_I2Cv1-1.rar разархивируем в папку \libraries\, которая находится в директории Arduino IDE.

Библиотека поддерживает набор стандартных функций для LCD экранов:

Функция Назначение
LiquidCrystal() создаёт переменную типа LiquidCrystal и принимает параметры подключения дисплея (номера выводов);
begin() инициализация LCD дисплея, задание параметров (кол-во строк и символов);
clear() очистка экрана и возврат курсора в начальную позицию;
home() возврат курсора в начальную позицию;
setCursor() установка курсора на заданную позицию;
write() выводит символ на ЖК экран;
print() выводит текст на ЖК экран;
cursor() показывает курсор, т.е. подчёркивание под местом следующего символа;
noCursor() прячет курсор;
blink() мигание курсора;
noBlink() отмена мигания;
noDisplay() выключение дисплея с сохранением всей отображаемой информации;
display() включение дисплея с сохранением всей отображаемой информации;
scrollDisplayLeft() прокрутка содержимого дисплея на 1 позицию влево;
scrollDisplayRight() прокрутка содержимого дисплея на 1 позицию вправо;
autoscroll() включение автопрокрутки;
noAutoscroll() выключение автопрокрутки;
leftToRight() задаёт направление текста слева направо;
rightToLeft() направление текста справа налево;
createChar() создаёт пользовательский символ для LCD-экрана.

1Описание FC-113 преобразователя последовательного интерфейса в параллельный

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр – «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 – подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: «0» соответствует разрыву цепи, «1» – установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27.

I2C модуль FC-113 для подключения ЖК экрана

Модуль i2c для LCD 1602 Arduino

С одной стороны модуля мы видим выводы i2c – земля, питание и 2 для передачи данных. С другой переходника видим разъемы внешнего питания. И, естественно, на плате есть множество ножек, с помощью которых модуль припаивается к стандартным выводам экрана.

Для подключения к плате ардуино используются i2c выходы. Если нужно, подключаем внешнее питание для подстветки. С помощью встроенного подстроечного резистора мы можем настроить настраиваемые значения контрастности J

На рынке можно встретить LCD 1602 модули с уже припаянными переходниками, их использование максимально упощено. Если вы купили отдельный переходник, нужно будет предварительно припаять его к модулю.

4Скетч для вывода текста на LCD экран по шине I2C

#include <Wire.h>  // подключаем библиотеку Wire
#include <LiquidCrystal_I2C.h>  // подключаем библиотеку ЖКИ

#define printByte(args) write(args); //

uint8_t heart = {0x0,0xa,0x1f,0x1f,0xe,0x4,0x0}; // битовая маска символа «сердце»

LiquidCrystal_I2C lcd(0x27, 16, 2); // Задаём адрес 0x27 для LCD дисплея 16x2

void setup() {
  lcd.init();  // инициализация ЖК дисплея
  lcd.backlight();  // включение подсветки дисплея
  lcd.createChar(3, heart);  // создаём символ «сердце» в 3 ячейке памяти
  lcd.home();  // ставим курсор в левый верхний угол, в позицию (0,0)
  
  lcd.print("Hello SolTau.ru!");  // печатаем строку текста
  lcd.setCursor(0, 1);  // перевод курсора на строку 2, символ 1
  lcd.print(" i ");  // печатаем сообщение на строке 2
  lcd.printByte(3); // печатаем символ «сердце», находящийся в 3-ей ячейке
  lcd.print(" Arduino ");
}

void loop() { // мигание последнего символа
  lcd.setCursor(13, 1);   // перевод курсора на строку 2, символ 1
  lcd.print("\t");
  delay(500);             
  lcd.setCursor(13, 1);   // перевод курсора на строку 2, символ 1
  lcd.print(" ");
  delay(500);
}

Кстати, символы, записанные командой lcd.createChar();, остаются в памяти дисплея даже после выключения питания, т.к. записываются в ПЗУ дисплея 1602.

Выводим на LCD 1602 русский шрифт

QAPASS дисплей поддерживает 8 новых символов (пронумерованных от 0 до 7) размером 5 на 8 пикселей. Букву на кириллице, как и символ, можно задать массивом из восьми байт, характеризующих соответствующую строку. Можно добавить до 8 символов, поэтому используйте при выводе сочетание латинских и кириллических букв, как на примере. Загрузите скетч с надписью «Я РОБОТЕХНИКА18.РФ»

Скетч с русскими буквами на LCD I2C

#include <Wire.h> // библиотека для управления устройствами по I2C 
#include <LiquidCrystal_I2C.h> // подключаем библиотеку для LCD 1602

LiquidCrystal_I2C LCD(0x27,16,2); // присваиваем имя LCD для дисплея

// создаем символ сердца и четырех букв на кириллице

byte heart = { 0b00000, 0b01010, 0b11111, 0b11111, 0b11111, 0b01110, 0b00100, 0b00000 };

byte I = { 0b01111, 0b10001, 0b10001, 0b01111, 0b00101, 0b01001, 0b10001, 0b00000 };
byte B = { 0b11111, 0b10000, 0b10000, 0b11110, 0b10001, 0b10001, 0b11110, 0b00000 };
byte N = { 0b10001, 0b10001, 0b10011, 0b10101, 0b11001, 0b10001, 0b10001, 0b00000 };
byte F = { 0b01110, 0b10101, 0b10101, 0b10101, 0b01110, 0b00100, 0b00100, 0b00000 };

void setup() {
   LCD.init(); // инициализация LCD дисплея
   LCD.backlight(); // включение подсветки дисплея

   // присваиваем символам порядковый номер
   LCD.createChar(1, heart);
   LCD.createChar(2, I);
   LCD.createChar(3, B);
   LCD.createChar(4, N);
   LCD.createChar(5, F);
  
   LCD.setCursor(6,0); // устанавливаем курсор на 6 символ первой строки
  
   LCD.print(char(2));
   LCD.print(" ");
   LCD.print(char(1));
  
   LCD.setCursor(0,1); // устанавливаем курсор на начало второй строки
  
   LCD.print("PO");
   LCD.print(char(3));
   LCD.print("OTEXH");
   LCD.print(char(4));
   LCD.print("KA18.P");
   LCD.print(char(5));
}

void loop() {
 
}

Пояснения к коду:

  1. массивы строк в функции можно прописывать в строку;
  2. слово РОБОТЕХНИКА18.РФ использует набор русских и латинских букв.