Самолеты лавочкина ла

К1ЛП332

   Интереснейший экземпляр!

   Во-первых, этой микросхемы нет практически ни в одном справочнике.
1ЛП331 есть, 1ЛП333 есть, а вторая пропущена!

Это были «половинки»; 1ЛП332 — половина 133ЛД1 (1ЛП331), один 4-входовый расширитель по ИЛИ.
Очень скоро производство их было прекращено, т.к. стало получаться достаточно нормальных, не половинок.
Память от них осталась в виде «дырок» в порядке номеров типов микросхем.

   В-третьих, корпус. Видны рудиментарные боковые выводы. Назначение
неизвестно, то ли пытались втиснуть дополнительные выводы, то ли для крепления к рамке при изготовлении.
Плюс к этому, очень острые грани корпуса, такого тоже не встречал более.

   Мало? Могу добавить и в-четвертых :))). Это (пока) самая ранняя микросхема из
этой серии у меня. Выпуск менее чем через год после окончания разработки…

Опытный реактивный истребитель Ла-168.

Ла-168

С началом закупок в Великобритании реактивных двигателей с большой тягой, у авиаконструкторов появились возможности создания более совершенных самолетов. ОКБ-301 приступает к разработкам высокоплана с расположением силовой установки в хвостовой части. В апреле 1948г. машина под управлением летчик-испытателя В. И. Хомякова отрывается от взлетной полосы. И в октябре этого же года Ла-168 отправляется на государственные испытания.

Возможно Вас заинтересует «Вертолеты ЯКовлева».

Машина успешно прошла ГИ, но в серию ее не пустили, хотя по некоторым параметрам она превосходила МиГ-15. Дело в том, что в частях уже начали летать на МиГ-15 и иметь два самолета с одинаковыми характеристиками было не рентабельно, тем более производство МиГ-15 обходилось дешевле.

Самолеты Лавочкина. Проект истребителя с ракетным двигателем Ла-162.

Ла-162

В Советском Союзе в послевоенный годы, отсутствовали турбореактивные двигатели большой мощности, поэтому авиаинженеры-конструкторы пытались найти альтернативные варианты. Одним из вариантов стало применение на истребителях ракетных жидкостных двигателей. ОКБ Лавочкина приступило к проектированию ракетного истребителя-перехватчика. Предполагалось, что самолет будет взлетать со сбрасываемой тележки, а садиться на лыжу и заднее колесо, расположенные в фюзеляже и выпускаемые при посадке. Но Ла-162 так и остался на чертежах, так как СССР начал приобретать в Англии более мощные, чем РД-10 и РД-20 ТРД.

Самая простая (и популярная) схема «цветомузыки» на тиристорах КУ202Н.

Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах. Тридцать лет назад я впервые
увидел вблизи полноценную, работающую «светомузыку». Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема.
Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно,
красный канал низких частот устойчиво моргает в ритм с ударными, средний — зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное
тонкое — звенящее и пищащее.

Недостаток один —
необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти «на полную» врубать свою «Электронику»
для того, что бы добиться достаточно устойчивой работы устройства.
В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс.
Например, с 220 до 12 вольт. Только подключать его нужно наоборот — низковольтной обмоткой на вход усилителя.
Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

(К)1ЛБ551, 1ЛБ551А, К155ЛА1

   Вполне обычные микросхемы (два элемента 4И-НЕ); паспорт
на них (от микросхемы производства завода «Искра»,
г.Ульяновск). Здесь они лишь по причине своего возраста…

   Самая ранняя дата выпуска микросхем этой серии, известная мне на сегодня — октябрь 1969 года.
Интересно, что логотип НИИМЭ здесь отформован в
пластмассе корпуса, а не нанесен краской.

   Эти выпуски еще могли разбраковываться по быстродействию/нагрузочной способности,
с добавлением дополнительной буквы в названии.

а вот эта микросхема интересна тем, что на лицевой
стороне у неё обозначение по новой системе, а на днище — еще по старой :)))

Структурная схема

Конденсатор С1 обеспечивает положительную обратную связь между выходом второго и входом первого инвертора необходимую для возбуждения генератора.

Резистор R1 обеспечивает необходимое смещение по постоянному току, а также позволяет осуществлять небольшую отрицательную обратную связь на частоте генератора.

В результате преобладания положительной обратной связи над отрицательной на выходе генератора получается напряжение прямоугольной формы.

Изменение частоты генератора в широких пределах производится подбором емкости СІ и сопротивления резистора R1. Генерируемая частота равна fген = 1/(С1 * R1). С понижением питания эта частота уменьшается. По аналогичной схеме собирается и НЧ генератор подбором соответствующим образом С1 и R1.

Рис. 1. Структурная схема генератора на логической микросхеме.

Схема гератора прямоугольных импульсов на К155ЛА3.

Очень легко собирается на К155ЛА3 генератор прямоугольных импульсов. Для этого можно использовать любые два ее
элемента. Схема может выглядеть вот так.

Импульсы снимаются между 6 и 7(минус питания) выводами микросхемы.
Для этого генератора частоту(f) в герцах можно расчитать по формуле f= 1/2(R1 *C1).
Значения подставляются в Омах и Фарадах.

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт

Главная особенность этой схемы радиожука
так это то что в ней в качестве генератора несущей частоты применена цифровая микросхема К155ЛА3
.

Схема состоит из простого микрофонного усилителя на транзисторе КТ135 (можно в принципе любой импортный с похожими параметрами. Да, кстати, у нас на сайте программа справочник имеется по транзисторам! Причем совершенно бесплатная! Если кому интересно, то подробности ), далее идет модулятор-генератор собранный по схеме логического мультивибратора , ну, и сама антенна- кусок провода скрученный в спираль для компактности.

Интересная особенность данной схемы: в модуляторе (мультивибраторе на логической микросхеме) отсутствует частотозадающий конденсатор. Вся особенность в том что элементы микросхемы имеют свою собственную задержку срабатывания которая и является частотозадающей. При введении конденсатора мы потеряем максимальную частоту генерации (а при напряжении питания 5V она будет порядка 100 мГц).Однако здесь есть интересный минус: по мере разряда батареи частота модулятора будет снижаться: расплата, так сказать, за простоту.Но зато есть и существенный «плюс»- в схеме нет ни одной катушки!

Дальность работы передатчика может быть по-разному, но по отзывам до 50 метров он работает стабильно.Рабочая частота в районе 88…100 мГц, так что подойдет любое радиоприемное устройство работающее в FM диапазоне- китайский радиоприемник, автомагнитола, мобильный телефон и даже китайский радиосканер.

Напоследок: рассуждая логически, для компактности вместо микросхемы К155ЛА3 можно было-бы установить микросхему К133ЛА3 в SMD корпусе, но какой будет результат сказать сложно пока не попробуешь… Так что если есть желающие по-экспериментировать- можете сообщить об этом у нас на ФОРУМЕ , будет интересно узнать что из этого вышло…

Микросхема К155ЛА3
является, по сути, базовым элементом 155-ой серии интегральных микросхем. Внешне по исполнению она выполнена в 14 выводном DIP корпусе, на внешней стороне которого выполнена маркировка и ключ, позволяющий определить начало нумерации выводов (при виде сверху — от точки и против часовой стрелки).

В функциональной структуре микросхемы К155ЛА3 имеется 4 самостоятельных логических элементов . Одно лишь их объединяет, а это линии питания (общий вывод — 7, вывод 14 – положительный полюс питания) Как правило, контакты питания микросхем не изображаются на принципиальных схемах.

Каждый отдельный 2И-НЕ элемент микросхемы К155ЛА3
на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. По правую сторону элементов находятся выходы, по левую сторону входы. Аналогом отечественной микросхемы К155ЛА3 является зарубежная микросхема SN7400, а все серия К155 аналогична зарубежной SN74.

Схема универсального генератора

Исходя из вышеизложенного, на рис. 2 представлена принципиальная схема универсального генератора, собранная на двух микросхемах типа K155ЛA3. Генератор позволяет получить три диапазона частот: 120…500 кГц (длинные волны), 400…1600 кГц (средние волны), 2,5…10 МГц (короткие волны) и фиксированную частоту 1000 Гц.

На микросхеме DD2 собран генератор низкой частоты, частота генерации которого составляет примерно 1000 Гц. В качестве буферного каскада между генератором и внешней нагрузкой используется инвертор DD2.4.

Низкочастотный генератор включается выключателем SA2, о чем свидетельствует красное свечение светодиода VD1. Плавное изменение выходного сигнала генератора НЧ производится переменным резистором R10. Частота генерируемых колебаний устанавливается грубо подбором емкости конденсатора С4, а точно — подбором сопротивления резистора R3.

Рис. 2. Принципиальная схема генератора на микросхемах К155ЛА3.

КМ155ИД8А, КМ155ИД9, К155ИД9

Без сомнений, эта пара (в керамическом корпусе) держит с большим
отрывом первое место в номинации «Самая красивая микросхема серии»

Просто какое-то
волнение в душе, когда держишь их в руке, это произведение искусства
и не только лишь инженерного.
Причём, обратите внимание, корпус весьма архаичен, явный привет из 70-х годов.
Он называется «Тур» и был разработан в НИИТТ в 1970-72 гг.
Форма ног, крышка корпуса — всё это отголоски древних времён, когда DIP
был ещё молод… Причем, насколько я знаю, это вообще чуть ли не единственные наши микросхемы в таком корпусе!
Вспоминается ещё разве что К507РМ1.
Опять же, золочение для микросхем невоенного применения (не отбраковки от «войны», а изначально гражданских)
вещь исключительная.
Впрочем, есть и вариант в обычном скучном пластике

Немного подробностей. Обе эти микросхемы представляют собой
дешифраторы для управления матрицей из светодиодов. 155ИД8 работает
на матрицу 7х5 точек, с возможностью индицировать цифры от 0 до 9, знаки
«-» и переполнение «Е». 155ИД9 управляет матрицей 7х4 точек;
справочный листок на неё.

Производитель, а, полагаю, и разработчик —
НИИ «Мион», г.Тбилиси (Грузия).
Как нередко было у «Миона», микросхемы эти не имеют зарубежного аналога, а представляют
собой чисто отечественные разработки.

Не могу отказать себе в удовольствии отснять их во всех
возможных ракурсах…

Схема устройства

Логические элементы D1.1—D1.3, резистор R1 и конденсатор С1 образуют переключающий генератор. При включении питания конденсатор С1 начинает заряжаться через резистор R1.

По мере заряда конденсатора повышается напряжение на его обкладке, соединенной с выводами 1, 2 логического элемента DL2. Когда оно достигнет 1,2… 1,5 В, на выходе 6 элемента D1.3 появится сигнал логической «1» (« 4 В), а на выходе 11 элемента D1.1 — сигнал логического «0» (« 0,4 В).

После этого конденсатор С1 начинает разряжаться через резистор R1 и элемент DLL . В итоге на выходе 6 элемента D1.3 будут формироваться прямоугольные импульсы напряжения. Такие же импульсы, но сдвинутые по фазе на 180°, будут на выводе 11 элемента D1.1, выполняющего роль инвертора.

Продолжительность заряда и разряда конденсатора С1, а значит, частота переключающего генератора, зависит от емкости конденсатора С1 и сопротивления резистора R1. При указанных на схеме номиналах этих элементов частота переключающего генератора составляет 0,7…0,8 Гц.

Рис. 1. Принципиальная схема двухтонального звонка на двух микросхемах К155ЛА3.

Импульсы переключающего генератора подаются на генераторы тона. Один из них выполнен на элементах D1.4, D2.2, D2.3, другой — на элементах D2.4, D2.3. Частота первого генератора — 600 Гц (ее можно изменять подбором элементов С2, R2), частота второго — 1000 Гц (эту частоту можно изменять подбором элементов СЗ, R3).

При работающем переключающем генераторе на выходе генераторов тона (вывод 6 элемента D2.3) будет периодически появляться то сигнал одного генератора, то сигнал другого. Затем эти сигналы поступают на усилитель мощности (транзистор VI) и преобразуются головкой В1 в звук. Резистор R4 необходим для ограничения тока базы транзистора.

Простой металлоискатель

Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомных (2 кОм) головных телефонов BF1 изменение тональности звучания которых и свидетельствует о наличии под катушкой-антенной металлического предмета.

Генератор, собранный на элементах DD1.1 и DD1.2, само возбуждается на частоте резонанса последовательного колебательного контура L1C1, настроенного на частоту 465 кГц (использованы элементы фильтра ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью катушки-антенны 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью конденсатора переменной емкости С2. позволяющего перед поиском настроить металлоискатель на обнаружение предметов определенной массы.
Биения, возникшие в результате смешения колебаний обоих генераторов, детектируются диодами VD1, VD2. фильтруются конденсатором С5 и поступают на головные телефоны BF1.

Все устройство собрано на небольшой печатной плате, что позволяет при питании от плоской батареи для карманного фонаря сделать его очень компактным и удобным в обращении

Janeczek A Prosty wykrywacz melali. — Radioelektromk, 1984, № 9 стр. 5.

Примечание редакции. При повторении металлоискателя можно использовать микросхему К155ЛA3, любые высокочастотные германиевые диоды н КПЕ от радиоприемника «Альпинист».

Эта же схема более подробно рассмотрена в сборнике Адаменко М.В. «Металлоискатели» М.2006 (Скачать). Далее статья из этой книги

Опыты с микросхемой К155ЛА3

На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.

После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.

Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.

Опыт первый (рис.1): Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)

Опыт второй (рис.2): Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.

Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.

Вывод второй: Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1

Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.

Опыт третий (рис.3): Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.

Источник

Применение шаговых двигателей. Простые схемы

Шаговые двигателя в настоящее время широко применяются в качестве приводов в принтерах, сканерах, DVD-проигрывателях и многих других . В случае выхода из строя такого прибора, из него можно извлечь некоторые полезные узлы и, если они работоспособны, использовать по другому подходящему назначению. Статья предназначена для любителей делать что-нибудь своими руками и не претендует на оригинальность, но содержит некоторые сведения, которые могут быть полезны.

Во-первых, все эти приборы имеют в своём составе блок питания, как правило — импульсный, на несколько напряжений. В основном это выходы с постоянными напряжениями +5, +12 и +24 … 36 вольт с токами до 2 … 3 ампер. Такие блоки питания можно использовать, например, для зарядных устройств, питания светодиодных лент или электроинструмента небольшой мощности. Но в данной статье будут даны примеры использования шаговых двигателей из подобных аппаратов.

Для питания и управления шаговым двигателем, конечно, требуется специальная схема-драйвер, это обеспечит его полную функциональность. Но если вам нужен «просто двигатель» без управления частотой вращения и шагом поворота вала, то вполне можно обойтись простейшей схемой питания с применением конденсатора:

— эта схема предполагает использование двигателей с двумя обмотками и отводами от их середины (всего 6 проводов). Обмотка 1 имеет выводы красного и белого цвета, обмотка 2 — синего и жёлтого. Средние выводы (коричневого цвета) здесь не используются. В зависимости от напряжения питания и мощности двигателя может потребоваться подбор элементов С* и R*.

При использовании такой схемы нельзя будет менять частоту (скорость) вращения, но можно менять его направление — при помощи переключателя S1. Вместо трансформатора и выпрямительного моста в схеме можно использовать как раз «родной» блок питания, который стоял в аппаратуре, где использовался этот двигатель.

Другой вариант использования шагового двигателя — в качестве генератора. При вращении вала такого двигателя на его обмотках наводится напряжение, которое можно использовать, например, для питания низковольтной лампы или светодиодов. В интернете можно найти множество схем-вариантов автономных фонариков с использованием шагового двигателя в качестве генератора энергии. Ниже приводятся их простейшие примеры :

При использовании ламп вместо светодиодов (маломощных на 3 . 12 вольт) их можно подключать к обмоткам напрямую, без использования выпрямителей.

Для увеличения мощности такого фонарика можно использовать все имеющиеся в нём обмотки, используя суммирование их мощностей на выходе (параллельное включение):

Конденсатор на выходе служит для сглаживания колебаний напряжения при неравномерной скорости вращения вала двигателя. Также на выходе можно включить аккумулятор (например от сотового телефона), который будет подзаряжаться при вращении вала двигателя . А вращать вал можно любым удобным и подходящим способом — с помощью надетого на него шкива с ручкой, привода от ветряной или гидро-«вертушки» и т. д…

В статье приведён минимум необходимой информации и простейшие примеры. Более сложные схемы включения с реализацией всех возможностей шаговых двигателей ( с возможностью полноценного управления) можно найти на специализированных сайтах в интернете или справочной литературе.

Благодарю за уделённое время.

Прошу поставить «палец-вверх», если статья была полезна

Микросхема К155ЛА3 и электронные самоделки на ней

Микросхема К155ЛА3,содержит четыре логических элемента 2И-НЕ,напряжение питания 5В,напряжение высокого уровня на выходе одного из элемента не ниже 2.4В,низкого уровня не более 0.4В.(на фото к55ла3,это полный аналог к155ла3,подходит по выводам и улучшенный)

Каждый элемент содержит четыре транзистора.VT1-двухэмиттерный транзистор,это транзистор входа,VT2-усиление,VT3-VT4 являются выходными транзисторами,каждый пропускает сигнал в своей фазе.Если VT3 открыт,то VT4 будет закрыт и наоборот.

Как работает микросхема.Высокий уровень-это единица и это соответствует напряжению от 2.4В и выше.Низкий уровень-это ноль,соответствует напряжению нескольких сотен милливольт.При подаче питания на микросхему 5В,на входах микросхемы вольтметр покажет высокий уровень примерно 3.5В,на выходах будет низкий уровень сотни или десятки мВ,так проверяют эту микросхему.

Если хоть на одном из входов элемента будет низкий уровень(вывод 1 или 2 подключен к минусу питания),то на выходе всегда будет высокий уровень или единица.Если на два входа подать высокий уровень,то на выходе будет низкий уровень или ноль.Инвертор-это когда на входе единица,а на выходе будет ноль и наоборот.

На двух элементах можно собрать простой генератор прямоугольных импульсов или мигалку.При подаче питания,на выводе 3 будет высокий уровень,а это значит,что на выводе 6 будет низкий уровень.Конденсатор С1 начнет заряжаться через резистор R1.Как только напряжение на конденсаторе достигнет пороговой величины,элемент DD1.1 инвертирует сигнал, на выводе 3 теперь будет ноль,а на выводе 6 будет единица.Конденсатор начнет разряжаться и вновь на выводе 3 появится единица и все будет повторяться.Светодиод будет мигать,частота вспышек зависит от емкости С1 и резистора R1.

На трех элементах можно собрать генератор прямоугольного сигнала на частоты десятки и сотни кГц,на частотах примерно 20-40МГц на выходе генератора будет синус.Генератор можно промодулировать звуком,надо на выводы 1-2 подать сигнал с плеера,тогда на FM приемнике можно будет поймать свой сигнал,но такой передатчик сгодится лишь для эксперимента.

Прерывистый звуковой генератор можно собрать на четырех элементах.На элементах DD1.3-DD1.4 собран звуковой генератор,на DD1.1-DD1.2 собран включатель-выключатель этого генератора.

Простая музыкальная игрушка.Звуковой генератор,тональность которого можно изменять резисторами разного сопротивления.Нажимая кнопку,подключаем резистор и генератор издает однотональный сигнал определенной частоты,на другую кнопку-сигнал другой частоты.Разных резисторов на разные номиналы должно быть штук десять,столько и кнопок.

Устройство управления шаговым электродвигателем

А. ЛОЗОВОЙ, г. Казань

Шаговые электродвигатели незаменимы при конструировании точных устройств позиционирования. Многие из подобных двигателей имеют на статоре по две многополюсные сдвинутые относительно друг друга обмотки, каждая из них — со средним выводом. Последние обычно соединяют с плюсом источника питания, а остальные выводы в определенной последовательности — с минусом.

Когда через одну из половин обмотки течет ток, ее вторая половина обесточена. Устройство, схема которого показана на рисунке, управляет шаговым двигателем, заставляя его ротор вращаться в одну или другую сторону. Каждый из импульсов генератора на элементах микросхемы DD1 поворачивает ротор на один шаг Частоту импульсов (и шагов) изменяют переменным оезистооом R3. Нужную последовательность уровней напряжения, подаваемых на обмотки дви гателя, формирует кол ьцево й двухразрядный счетчик на D-триггерах DD3.1 и DD3.2. С помощью двух элементов «Исключающее ИЛИ» (DD2.2 и DD2.3) при необходимости инвертируют сигналы обратной связи счетчика, изменяя таким образом направления счета и вращения ротора двигателя М1 в зависимости от положения выключателя SA1. Элементы DD2.1 и DD2.4 — буферные.

Непосредственно коммутируют обмотки двигателя транзисторные ключи с открытым коллектором, входящие в состав микросхемы DD4 (использованы лишь четыре из семи имеющихся ключей). Все выходы микросхемы снабжены внутренними защитными диодами, общий катод которых — вывод 9. Таким образом, каждая полуобмотка зашунтирована диодом, устраняющим коммутационные выбросы напряжения.

Мощность электродвигателя М1 ограничена максимальным током через один ключ — 300 мА и суммарной мощностью, рассеиваемой микросхемой DD4, 2 Вт при температуре окружающей среды 25 °С. Микросхему К1109КТ23 можно заменить импортной — ULN2004A.

От редакции. Входные цепи ключей микросхемы К1109КТ23 рассчитаны и на непосредственное подключение к выходам микросхем структуры КМОП. Поэтому микросхемы DD1—DD3 можно заменить функциональными аналогами из серии К561: К155ЛАЗ на К561ЛА7, К155ЛП5 на К561ЛП2, К155ТМ2 на К561ТМ2, учтя различия а назначении их выводов, уменьшив в 500 раз емкость конденсатора С1 и увеличив во столько же раз сопротивление резисторов R2 и R3. После такой замены устройство можно питать от одного источника напряжением 12 В. Цепи питания микросхем следует зашунтировать конденсаторами.

ИНФОРМАЦИОННОЕ ПРИЛОЖЕНИЕ 5

СПРАВОЧНЫЕ ДАННЫЕ

1. Зависимости UOH,UOL,IOS,
I
IL,IIH,tPHL,tPLH= f
(t °С),tPHL,tPLH =
f
(СH) для микросхем К155ЛА2 приведены на черт. 25
— 27, 29
— 34.

2. Зависимости UOH,UOL, Ios,
I
IL,IIH, tPHL, tPLH = f (t
°С)tPHL, tPLH= f (СH), ICCL,
I
CCHдля микросхем
К155ЛА3 приведены на черт. 25
— 27, 29
— 36.

3. Зависимости UOH, UOL, Ios, Iss=
F
(f),tpHL, tPLH =
f
(t °C)tpHL, tPLH=f
(CH)для микросхем К155ТМ2 приведены на черт. 25
— 28, 37
— 40.

4. Ожидаемая интенсивность отказов при
эксплуатации в ЭВМ 1 ∙ 10-7 1/ч.

5. Типовое значение тактовой частоты для
микросхем К155ТМ2 20 МГц.

6. Типовые значения динамических
параметров:

время задержки распространения сигнала при включении tPHL, нc:

К155ЛА2                                                            11;

К155ЛА3                                                            7;

К155ТМ2                                                           20;

время задержки распространения сигнала при выключении tPLH, нc:

К155ЛА2                                                   13;

К155ЛА3                                                   12;

К155ТМ2                                                  15.

График зависимости UOH = f (t °C)для микросхем типов К155ЛА2, К155ЛА3,
К155ТМ2

Uсс = 5,25В; UIL
= 0,40 В; N = 10

Черт. 28

График зависимости UOL= f (t °C)для микросхем типов
К155ЛА2, К155ЛА3, К155ТМ2

Uсс= 5,25В; UIH= 2,40 В; N = 10

Черт. 29

График зависимости IOSf
(t °C) для микросхем типов
К155ЛА2, К155ЛА3, К155ТМ2 при Ucc
=
5,25

Черт. 30

График зависимости ICC=
F (f)для микросхем
типа К155ТМ2 при Uсс
= 5,25

Черт. 31

График зависимости IIL
=
f (t °C)для микросхем типов
К155ЛА2, К155ЛА3

Ucc= 5,25 В; UIL = 0,40 В

Черт. 32

График зависимости IIH= f (t °C)для микросхем типов
К155ЛА2, К155ЛА3

Uсс = 5,25 В; UIH= 2,40 В

Черт. 33

График зависимости tPHL
=
f (t °C)для
микросхем типов К155ЛА2, К155ЛА3 при Ucc= 5,0 В, С∑H = 15 пФ, N = 10

Черт. 34

График
зависимости tPLH=
f (t °C)для микросхем типов К155ЛА2, К155ЛА3 при Uсс = 5,0 В, С∑H = 15 пФ, N = 10

Черт.
35

График
зависимости tPHL= f ∑H)
для микросхем типов К155ЛА2, К155ЛА3 при UCC= 5,0 В, N =
10, t = 293 К (20 °C)

Черт. 36

График зависимости tPLH= f
(CH)для микросхем типов К155ЛА2, К155ЛА3 при Uсс=
5,0 В, N =10,t
= 293 K
(20 °C)

Черт. 37

График зависимости ICCL
=
f (t °C)для
микросхем типа К155ЛА3 при Uсс= 5,25
В

Черт. 38

График
зависимости ICCL = f
(t °C)для микросхем типа К155ЛА3 при Ucc= 5,25 В

Черт. 39

График зависимости tPHL
=
f (t °C)для
микросхем типа К155ТМ2 при
Uсс
=
5,0 В, N =10, CH = 15 пФ

Черт. 40

График зависимости tPLH=
f (t °C)для микросхем

типа К155ТМ2 при Uсс
= 5,0 В, N = 10, С∑H
= 15 пФ

Черт. 41

График зависимости tPHL = f
(С∑H)для микросхем типа К155ТМ2 при Ucc=
5,0В,
N = 10, t
= 293 K
(20 °C)

Черт. 42

График зависимости tPLH= f
(С∑H)для микросхем типа К155ТМ2 при UCC = 5,0 В, N = 10, t
= 293 К (20 °С)

Черт. 43

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. Автор — делегация СССР в Постоянной
Комиссии по радиотехнической и электронной промышленности.

2. Тема — 18.820.01-74.

3. Стандарт СЭВ утвержден на 41-м заседании
ПКС.

4. Сроки начала применения стандарта СЭВ:

Страны
— члены СЭВ

Срок начала применения стандарта СЭВ в
договорно-правовых отношениях по экономическому и научно-техническому
сотрудничеству

Срок начала применения стандарта СЭВ в
народном хозяйстве

НРБ

Январь 1979 г.

Январь 1981 г.

ВНР

Январь 1980 г.

ГДР

Республика Куба

МНР

ПНР

Январь 1979 г.

Январь 1979 г.

СРР

Июль 1979 г.

СССР

Январь 1978 г.

Июль 1979 г.

ЧССР

5. Срок первой проверки — 1983 г.,
периодичность проверки — 5 лет.

1. Общие положения. 1

2. Технические требования. 1

2.1. Требования к конструкции. 1

2.2. Требования к электрическим параметрам и режимам.. 2

2.3. Требования к устойчивости при механических
воздействиях. 2

2.4. Требования к устойчивости при климатических
воздействиях. 2

2.5. Дополнительные требования. 4

2.6. Требования к надежности. 5

2.7. Требования к маркировке. 5

2.8. Требования к упаковке. 5

3. Правила приемки. 5

4. Методы испытаний. 7

5. Транспортирование и хранение. 35

6. Указания по эксплуатации. 36

Информационное приложение 1. 37

Информационное приложение 2. 37

Информационное приложение 3. 38

Информационное приложение 4. 39

Информационное приложение 5. 40